The coffee berry borer, Hypothenemus hampei (Ferrari), is one of the most devastating coffee pests (Coffea arabica L.) worldwide. Digestion in the midgut of H. hampei is facilitated by aspartic proteases. This is the first report of an aspartic protease inhibitor from Lupinus bogotensis. The L. bogotensis aspartic protease inhibitor (LbAPI) exhibited a molecular mass of 12.84kDa, as determined by MALDI-TOF, and consists of a single polypeptide chain with an isoelectric point of 4.5. In thermal activity experiments, stability was retained at pH 2.5 after heating the protein at 70 degrees C for 30 min, but was unstable at 100 degrees C. The protein was also stable over a broad range of pH, from 2 to 11, at 30 degrees C. In in vitro assays, LbAPI was highly effective against aspartic proteases from H. hampei guts with a half maximal inhibitory concentration (IC(50)) of 2.9 microg. LbAPI inhibits pepsin in a stoichiometric ratio of 1:1. LbAPI inhibition of pepsin was competitive, with a K(i) of 3.1 microM, using hemoglobin as substrate. Its amino-terminal sequence had 76% homology with the seed storage proteins vicilin and beta-conglutin. The homology of LbAPI to vicilins from Lupinus albus L. suggests that they may also serve as storage proteins in the seed. LbAPI could be a promising tool to make genetically modified coffee with resistance to H. hampei.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phytochem.2010.03.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!