The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism.

Clin Biochem

Biochemistry Unit, Canterbury Health Laboratories, Christchurch, New Zealand.

Published: June 2010

Betaine is an essential osmolyte and source of methyl groups and comes from either the diet or by the oxidation of choline. Its metabolism methylates homocysteine to methionine, also producing N,N-dimethylglycine. Betaine insufficiency is associated with the metabolic syndrome, lipid disorders and diabetes, and may have a role in vascular and other diseases. Betaine is important in development, from the pre-implantation embryo to infancy. Betaine supplementation improves animal and poultry health, but the effect of long-term supplementation on humans is not known, though reports that it improves athletic performance will stimulate further studies. Subsets of the population that may benefit from betaine supplementation could be identified by the laboratory, in particular those who excessively lose betaine through the urine. Plasma betaine is highly individual, in women typically 20-60 micromol/L and in men 25-75 micromol/L. Plasma dimethylglycine is typically <10 micromol/L. Urine betaine excretion is minimal, even following a large betaine dose. It is constant, highly individual and normally <35 mmol/mole creatinine. The preferred method of betaine measurement is by LC-MS/MS, which is rapid and capable of automation. Slower HPLC methods give comparable results. Proton NMR spectrometry is another option but caution is needed to avoid confusion with trimethylamine-N-oxide.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiochem.2010.03.009DOI Listing

Publication Analysis

Top Keywords

betaine
8
betaine supplementation
8
clinical significance
4
significance betaine
4
betaine osmolyte
4
osmolyte key
4
key role
4
role methyl
4
methyl group
4
group metabolism
4

Similar Publications

Ion homeostasis and coordinated salt tolerance mechanisms in a barley (Hordeum vulgare L.)doubled haploid line.

BMC Plant Biol

January 2025

Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.

Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.

View Article and Find Full Text PDF

Background: Limited studies have suggested an effect of dietary choline intake on uric acid levels. We aim to investigate the associations between choline intake and hyperuricemia (HUA), as well as the mediating role of kidney function in this relationship, among the Chinese population aged 6-17 years.

Methods: Participants were divided into quartiles according to residual energy-adjusted dietary choline intake in our cross-sectional study.

View Article and Find Full Text PDF
Article Synopsis
  • This study examines how serum metabolite profiles can help understand feed efficiency in lactating Holsteins and identify biomarkers for predicting residual feed intake (RFI).
  • Comparisons were made between high and low RFI cows at different lactation stages, revealing significant differences in various metabolites, especially notable changes in early and mid-lactation.
  • The findings suggest that specific metabolites, like p-Hydroxyhippuric acid and acetylornithine, could serve as effective biomarkers for predicting RFI, with models showing varying predictive accuracy across lactation stages.
View Article and Find Full Text PDF

Background/objectives: Ergothioneine (EGT) is an effective antioxidant that animals cannot produce and has an important anti-inflammatory role in cell protection, which can help lower the risk of various diseases. In this study, we investigated the potential role of gut microbiota in the production of EGT, which was found to increase in the mouse liver after dietary supplementation with betaine (BET) or polydextrose (PDX).

Methods: The effects of BET and PDX on the gut microbiota and tissue EGT content were investigated using a diet-induced obese mouse model and simulated fermentation in the human colon.

View Article and Find Full Text PDF

Background/objectives: Crohn's disease is known for being associated with an abnormal composition of the bacterial flora, dysbiosis and intestinal function disorders. Metabolites produced by gut microbiota play a pivotal role in the pathogenesis of CD, and the presence of unspecific extraintestinal manifestations.

Methods: The aim of this study was a determination of the level of bacterial metabolites in blood plasma in patients with Crohn's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!