We report on the impact of a thermoplastic immobilization system on intra- and interfraction motion for patients undergoing breast or chest wall radiation therapy. Patients for this study were treated using helical tomotherapy. All patients were immobilized using a thermoplastic shell extending from the shoulders to the ribcage. Intrafraction motion was assessed by measuring maximum displacement of the skin, heart, and chest wall on a pretreatment 4D computed tomography, while inter-fraction motion was inferred from patient shift data arising from daily image guidance procedures on tomotherapy. Using thermoplastic immobilization, the average maximum motion of the external contour was 1.3 ± 1.6 mm, whereas the chest wall was found to be 1.6 ± 1.9 mm. The day-to-day setup variation was found to be large, with random errors of 4.0, 12.0, and 4.5 mm in the left-right, superior-inferior, and anterior-posterior directions, respectively, and the standard deviations of the systematic errors were found to be 2.7, 9.8, and 4.1 mm. These errors would be expected to dominate any respiratory motion but can be mitigated by daily online image guidance. Using thermoplastic immobilization can effectively reduce respiratory motion of the chest wall and external contour, but these gains can only be realized if daily image guidance is used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.meddos.2010.01.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!