Neutralization of red mud using CO2 sequestration cycle.

J Hazard Mater

Department of Chemistry, National Institute of Technology, Rourkela 769008, Orissa, India.

Published: July 2010

A laboratory study was conducted to investigate the ability of neutralization of red mud (RM) using carbon dioxide gas sequestration cycle at ambient conditions. The neutralized red mud (NRM) was characterized by XRD, SEM, EDX, FT-IR and auto titration method. X-ray diffraction pattern of NRM was revealed that the intensity of gibbsite was increased prominently and formed ilmenite due to dissolution of minerals. EDX analysis was showed that the %(w/w) of Na, C, O, Si were higher in the carbonated filtrate as compared to the RM and NRM. The permanently sequestered CO(2)%(w/w) per 10 g of red mud were approximately 26.33, approximately 58.01, approximately 55.37, and approximately 54.42 in NRM and first, second, third cycles of carbonated filtrate, respectively. The pH of red mud was decreased from approximately 11.8 to approximately 8.45 and alkalinity was decreased from approximately 10,789 to approximately 178 mg/L. The acid neutralizing capacity of NRM was approximately 0.23 mol H(+)/kg of red mud. The specific advantages of these cyclic processes are that, large amount of CO(2) can be captured as compared to single step.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2010.02.052DOI Listing

Publication Analysis

Top Keywords

red mud
24
neutralization red
8
sequestration cycle
8
carbonated filtrate
8
mud
6
red
5
nrm
5
mud co2
4
co2 sequestration
4
cycle laboratory
4

Similar Publications

In the context of evaluating the environmental impact of deep-sea tailing practices, we conducted a case study on the Bayer effluent released into the Mediterranean Sea by the French Gardanne alumina plant. This effluent results from the filtration of red mud, which has previously been discharged into the Cassidaigne canyon for 55 years. In 2015, regulatory changes permitted the released of a filtered effluent instead of the slurry.

View Article and Find Full Text PDF

Effect of cerium-zirconium oxide-loaded red mud on the selective catalytic reduction of NO in downhole diesel vehicle exhaust.

Environ Pollut

January 2025

College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong Province, China; State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China.

Red mud (RM), an iron oxide-rich solid waste, shows potential as a catalyst for selective catalytic reduction in denitrification processes. This study investigates the catalytic performance and mechanism of metal-modified RM in reducing NO from diesel vehicle exhaust. Acid-washed RM catalysts were impregnated with varying ratios of cerium (Ce) and zirconium (Zr).

View Article and Find Full Text PDF

Soil polluted system shapes endophytic fungi communities associated with : a field experiment.

PeerJ

January 2025

Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China.

With the expansion of the mining industry, environmental pollution from microelements (MP) and red mud (RM) has become a pressing issue. While bioremediation offers a cost-effective and sustainable solution, plant growth in these polluted environments remains difficult. is one of the few plants capable of surviving in RM-affected soils.

View Article and Find Full Text PDF

Arresting of efflorescence in ceramic tiles developed using caustic alumina industry waste (red mud).

Sci Total Environ

January 2025

CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Bhopal, Madhya Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India. Electronic address:

Conversion of caustic red mud (RM, Alumina industry waste) into building materials becoming one of the viable solution for its large scale utilization. The building materials developed using RM often results in efflorescence due to its high alkalinity, which is detrimental for the structural integrity of the buildings. The X-ray shielding tiles developed through ceramic route using the mixtures of RM, BaSO and kaolin clay also suffers from severe NaSO efflorescence when sintered above 1000 °C.

View Article and Find Full Text PDF

This study presents a novel FeO/C composite material synthesized from red mud through a process of magnetic roasting and separation. The research explores the impact of FeO/C dosages, sodium persulfate (PS) concentrations, and initial solution pH on the chemical oxygen demand (COD) removal efficiency using Acid Orange 7 as a model pollutant. Optimal conditions were identified as 3 g/L FeO/C, 20 mM PS, and an initial pH of 2, achieving a 94.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!