Objective: Pauses for shock delivery in chest compressions are detrimental to the success of resuscitation and may be eliminated with the use of mechanical chest compressors. However, the optimal phasic relationship between mechanical chest compression and defibrillation is still unknown. We therefore undertook a study to assess the effects of timing of defibrillation in the mechanical chest compression cycle on the defibrillation threshold (DFT) using a porcine model of cardiac arrest.

Methods: Ventricular fibrillation was electrically induced and untreated for 10s in 8 domestic pigs weighing between 26 and 30 kg. Mechanical chest compression was then continuously performed for 25s, followed by a biphasic electrical shock which was delivered to the animal at 6 randomized coupling phases, including a control phase, with a pre-determined energy setting. The control phase was chosen at a constant 2s following discontinued chest compression. A novel grouped up-and-down DFT testing protocol was used to compare the success rate at different coupling phases. After a recovery interval of 4 min, the testing sequence was repeated, resulting in a total of 60 test shocks delivered to each animal.

Results: No difference between the delivered shock energy, voltage and current were observed among the 6 study phases. The defibrillation success rate, however, was significantly higher when shocks were delivered in the upstroke phase of mechanical chest compression.

Conclusion: Defibrillation efficacy is maximal when electrical shock is delivered in the upstroke phase of mechanical chest compression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resuscitation.2010.02.022DOI Listing

Publication Analysis

Top Keywords

mechanical chest
28
chest compression
20
chest
9
optimal phasic
8
phasic relationship
8
chest compressions
8
electrical shock
8
shock delivered
8
coupling phases
8
control phase
8

Similar Publications

Introduction: The present study aimed to explore the epidemiologic threats and factors associated with the coronavirus disease 2019 (COVID-19)-associated mucormycosis (CAM) epidemic that emerged in Egypt during the second COVID-19 wave. The study also aimed to explore the diagnostic features and the role of surgical interventions of CAM on the outcome of the disease in a central referral hospital.

Methodology: The study included 64 CAM patients from a referral hospital for CAM and a similar number of matched controls from COVID-19 patients who did not develop CAM.

View Article and Find Full Text PDF

Isoferulic acid (IA), a derivative of cinnamic acid, is derived from Danshen and exhibits anticancer properties by disrupting cancer cell activities. However, its role in pancreatic cancer, the "king of cancer", was unknown. In this study, pancreatic cancer cells were subjected to treatment with IA (6.

View Article and Find Full Text PDF

Mechanical power (MP) refers to ventilator-delivered energy to the lungs, which may induce lung injury. We examined the relationship between MP and mortality in patients with acute respiratory distress syndrome (ARDS) who underwent prone positioning. This multicenter retrospective study included data on all patients admitted to the intensive care units of eight referral hospitals in Taiwan from October 2015 to March 2016, and in Chang Gung Memorial Hospital Linkou branch from January 2017 to October 2023.

View Article and Find Full Text PDF

Background: Incentive spirometer is used in lung expansion therapy to maintain alveolar patency and improve pulmonary volumes in postoperative cardiac surgical patients. Deep breathing exercises with an incentive spirometer significantly reduce the development of postoperative pulmonary complications after open-heart cardiac surgery.

Aim: To determine the effect of deep breathing exercises with an incentive spirometer initiated in the preoperative period on respiratory parameters and complications in patients who underwent open-heart surgery.

View Article and Find Full Text PDF

Local characterization of collagen architecture and mechanical properties of tissue engineered atherosclerotic plaque cap analogs.

Acta Biomater

January 2025

Department of Cardiology, Biomedical Engineering, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands.

Many cardiovascular events are triggered by fibrous cap rupture of an atherosclerotic plaque in arteries. However, cap rupture, including the impact of the cap's structural components, is poorly understood. To obtain better mechanistic insights in a biologically and mechanically controlled environment, we previously developed a tissue-engineered fibrous cap model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!