A synthetic "phage-like" system was designed for screening mixtures of small molecules in live cells. The core of the system consists of 2 mum diameter cross-linked monodispersed microspheres bearing a panel of fluorescent tags and peptides or small molecules either directly synthesized or covalently conjugated to the microspheres. The microsphere mixtures were screened for affinity to cell line PC-3 (prostate cancer model) by incubation with live cells, and as was with phage-display peptide methods, unbound microspheres were removed by repeated washings followed by total lysis of cells and analysis of the bound microspheres by flow-cytometry. Similar to phage-display peptide screening, this method can be applied even in the absence of prior information about the cellular targets of the candidate ligands, which makes the system especially interesting for selection of molecules with high affinity for desired cells, tissues, or tumors. The advantage of the proposed system is the possibility of screening synthetic non-natural peptides or small molecules that cannot be expressed and screened using phage display libraries. A library composed of small molecules synthesized by the Ugi reaction was screened, and a small molecule, Rak-2, which strongly binds to PC-3 cells was found. Rak-2 was then individually synthesized and validated in a complementary whole cell-based binding assay, as well as by live cell microscopy. This new system demonstrates that a mixture of molecules bound to subcellular sized microspheres can be screened on plated cells. Together with other methods using subcellular sized particles for cellular multiplexing, this method represents an important milestone toward high throughput screening of mixtures of small molecules in live cells and in vivo with potential applications in the fields of drug delivery and diagnostic imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/cc900156z | DOI Listing |
Adv Sci (Weinh)
December 2024
Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland.
The translation of cell-derived extracellular vesicles (EVs) into biogenic gene delivery systems is limited by relatively inefficient loading strategies. In this work, the loading of various nucleic acids into small EVs via their spontaneous hybridization with preloaded non-lamellar liquid crystalline lipid nanoparticles (LCNPs), forming hybrid EVs (HEVs) is described. It is demonstrated that LCNPs undergo pH-dependent structural transitions from inverse hexagonal (H) phases at pH 5 to more disordered non-lamellar phases, possibly inverse micellar (L) or sponge (L) phases, at pH 7.
View Article and Find Full Text PDFIn Vivo
December 2024
Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan;
Background/aim: Immune checkpoint blockade has achieved great success as a targeted immunotherapy for solid cancers. However, small molecules that inhibit programmed death 1/programmed death ligand 1 (PD-1/PD-L1) binding are still being developed and have several advantages, such as high bioavailability. Previously, we reported a novel PD-1/PD-L1-inhibiting small compound, SCL-1, which showed potent antitumor effects on PD-L1 tumors.
View Article and Find Full Text PDFAnticancer Res
December 2024
Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, P.R. China;
Background/aim: Solute carrier (SLC) family 15 member 2 (SLC15A2) is an integral member of the SLC family that plays a pivotal role in numerous biological processes, including the regulation of cellular signaling pathways. However, its role in prostate cancer (PCa) remains inadequately elucidated. This study aims to investigate the prognostic significance of SLC15A2 in PCa.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China. Electronic address:
The faithful production of primordial germ cells (PGCs) in vitro opens a wide range of novel applications in reproductive biology and medicine. However, the reproducibility of PGCs culture conditions across different laboratories or breeds remains a challenge. Therefore, it is necessary to research the molecular dynamics that lead to the gradual establishment of cultured PGCs lines network.
View Article and Find Full Text PDFSurgery
December 2024
Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC; Department of Medicine (Endocrinology), Duke University School of Medicine, Durham, NC.
Objective: To characterize early physiologic stresses imposed by surgery by applying metabolomic analyses to deeply phenotype pre- and postoperative plasma and urine of patients undergoing elective surgical procedures.
Background: Patients experience perioperative stress through depletion of metabolic fuels. Bowel stasis or injury might allow more microbiome-derived uremic toxins to enter the blood, while the liver and kidney are simultaneously clearing analgesic and anesthetic drugs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!