AI Article Synopsis

Article Abstract

A new mixed experimental and theoretical approach for determining the exact three-dimensional orientation of electronic transition dipole moments (tdms) within the molecular frame is discussed. Results of applying this method on Chlorophyll a and the dye Coumarin 314 (C314) are presented. For C314 the possible influence of a mixture of E- and Z-isomers in the sample on the determined electronic tdm is investigated. Moreover, the robustness of the method is investigated with the C314 data.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.200900888DOI Listing

Publication Analysis

Top Keywords

electronic transition
8
transition dipole
8
determining three-dimensional
4
three-dimensional electronic
4
dipole moment
4
moment orientation
4
orientation influence
4
influence isomeric
4
isomeric mixture
4
mixture mixed
4

Similar Publications

Background: The aging global population and the rising prevalence of chronic disease and multimorbidity have strained health care systems, driving the need for expanded health care resources. Transitioning to home-based care (HBC) may offer a sustainable solution, supported by technological innovations such as Internet of Medical Things (IoMT) platforms. However, the full potential of IoMT platforms to streamline health care delivery is often limited by interoperability challenges that hinder communication and pose risks to patient safety.

View Article and Find Full Text PDF

Exploring P-(Fe,V)-Codoped Metastable-Phase β-NiMoO for Improving the Performance of Overall Water Splitting.

Inorg Chem

January 2025

School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.

It is especially essential to develop high-performance and low-cost nonprecious metal catalysts for large-scale hydrogen production. A large number of electrochemical catalysts composited by transition metal centers has been reported; however, it is still a great challenge to design and manipulate target electrocatalysts to realize high overall water-splitting activity at the atomic level. Herein, we develop totally new P-(Fe,V)-codoped metastable-phase β-NiMoO.

View Article and Find Full Text PDF

Mid-infrared thermal radiation has attracted attention due to its wide range of applications. Compared to the static process of thermal emission, if thermal radiation can be dynamically controlled, it would be more suitable for practical applications. Herein, we designed a controllable thermal emitter based on phase change materials.

View Article and Find Full Text PDF

How does goldene stack?

Mater Horiz

January 2025

Department of Applied Physics and Center for Computational Engineering and Sciences, State University of Campinas, Campinas, São Paulo, Brazil.

The recent synthesis of goldene, a 2D atomic monolayer of gold, has opened new avenues in exploring novel materials. However, the question of when multilayer goldene transitions into bulk gold remains unresolved. This study used density functional theory calculations to address this fundamental question.

View Article and Find Full Text PDF

Semiconducting transition metal dichalcogenides (TMDs) have attracted significant attention for their potential to develop high-performance, energy-efficient, and nanoscale electronic devices. Despite notable advancements in scaling down the gate and channel length of TMD field-effect transistors (FETs), the fabrication of sub-30 nm narrow channels and devices with atomic-scale edge control still poses challenges. Here, we demonstrate a crystallography-controlled nanostructuring technique to fabricate ultranarrow tungsten disulfide (WS) nanoribbons as small as sub-10 nm in width.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!