Current angioplasty techniques for recanalization of totally occluded arteries are limited by the inability to cross the occlusion and by the risk of perforation. A fiberoptic fluorescence guided laser recanalization system was developed and evaluated in vitro for recanalization of 17 human femoral or tibial totally occluded arterial segments (length 1.9-6.8 cm, diameter 2.5-6.0 mm). A 400 or 600 micron silica fiber was coupled to a helium-cadmium laser (lambda = 325 nm) for fluorescence excitation and to a holmium: YAG laser (lambda = 2.1 micron) for tissue ablation. Fluorescence was recorded during recanalization after every other holmium laser pulse. During recanalization, each arterial segment was bent 30-90 degrees with respect to the fiber to simulate arterial tortuosity. Ablation continued with fiber advancement as long as the fluorescence confirmed that the target tissue was atherosclerotic. Arterial spectra were classified as normal or atherosclerotic by an on-line computerized fluorescence classification algorithm (sensitivity 93%, specificity 95%). Normal fluorescence necessitated redirection of the fiber greater than 30 times per segment to continue recanalization. Fifteen of 17 totally occluded arteries had multiple recanalization channels created following total energy delivery of 40-1,016 Joules per segment with no angiographic or histologic evidence of laser perforation. Two heavily calcified arterial occlusions were not recanalized due to inhibition of holmium: YAG laser ablation by the recording of normal fluorescence spectra. Therefore, this fluorescence guided laser recanalization system appears safe and effective for recanalization of totally occluded arteries and merits in vivo evaluation. However, the lower sensitivity of fluorescence detection of heavily calcified plaques may limit the efficacy (but not safety) of fluorescence guided recanalization of heavily calcified occlusions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/lsm.1900110204 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!