This study reports experimental evidence for light-mediated changes of stem hydraulic conductance (K(stem)) in field-grown laurel plants. Field measurements based on the evaporative flux method revealed that sun-exposed branches had 60% higher K(stem) with respect to shade-exposed branches. Xylem sap potassium concentration was approximately 3 mM as recorded in shaded branches and up to 12 mM in illuminated ones. Such a difference in [K(+)] proved to induce significant increase in xylem hydraulic conductance of excised twigs when artificially perfused with various solutions, as a likely consequence of the interaction of cations with the pectic matrix of pit membranes (the so-called 'ionic effect'). We propose that this mechanism provides plants with a large potential for fine regulation of water flow towards different parts of the canopy exposed to different environmental conditions with the result of optimizing light and water utilization.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpq017DOI Listing

Publication Analysis

Top Keywords

xylem sap
8
hydraulic conductance
8
changes xylem
4
sap ionic
4
ionic content
4
content stem
4
stem hydraulics
4
hydraulics response
4
response irradiance
4
irradiance laurus
4

Similar Publications

Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources.

View Article and Find Full Text PDF

The synergistic application of calcium (Ca) and magnesium (Mg) was investigated to mitigate cadmium (Cd) uptake and translocation in rice grown in Cd-contaminated soil. A pot experiment was conducted using different Ca:Mg molar ratios (Ca1:Mg2, Ca2:Mg1, and Ca1:Mg1) to evaluate their effect on Cd uptake. The results showed that the Ca1:Mg1 treatment achieved the highest reduction in grain Cd content (54.

View Article and Find Full Text PDF

Introduction: 5-Aminolevulinic acid (ALA) is an essential biosynthetic precursor of tetrapyrrole compounds, naturally occurring in all living organisms. It has also been suggested as a new plant growth regulator. Treatment with ALA promotes strawberry Na homeostasis under salt stress.

View Article and Find Full Text PDF

Heavy metal pollution is a worldwide problem that threaten agricultural production and human health. Methyl jasmonate (MeJA) is a phytohormone that could enhance plant resistance against various stresses. However, the mechanism of MeJA in cadmium (Cd) uptake, distribution, and translocation in rice plants remains elusive.

View Article and Find Full Text PDF

Lead (Pb) pollution in soil affects growth of plants. Plants' endogenous hormones play an important role in resistance to Pb of plant. In order to explore the hormone-based mechanisms of Pb accumulationin in hyperaccumulator , a pot experiment was conducted to analyze the contents of endogenous hormones (auxin, gibberellin, abscisic acid, and cytokinin) and related genes expressions, and Pb contents of , as well as the transporter (cation exchangers (CAX), heavy metal ATPases (HMA), and ATP-binding cassette (ABC)) concentrations under foliar spraying of indoleacetic acid (IAA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!