Amyloid fibrils are associated with many neurodegenerative diseases. It was found that amyloidogenic oligomers, not mature fibrils, are neurotoxic agents related to these diseases. Molecular mechanisms of infectivity, pathways of aggregation, and molecular structure of these oligomers remain elusive. Here, we use all-atom molecular dynamics, molecular mechanics combined with solvation analysis by statistical-mechanical, three-dimensional molecular theory of solvation (also known as 3D-RISM-KH) in a new MM-3D-RISM-KH method to study conformational stability, and association thermodynamics of small wild-type Abeta(17-42) oligomers with different protonation states of Glu(22), as well the E22Q (Dutch) mutants. The association free energy of small beta-sheet oligomers shows near-linear trend with the dimers being thermodynamically more stable relative to the larger constructs. The linear (within statistical uncertainty) dependence of the association free energy on complex size is a consequence of the unilateral stacking of monomers in the beta-sheet oligomers. The charge reduction of the wild-type Abeta(17-42) oligomers upon protonation of the solvent-exposed Glu(22) at acidic conditions results in lowering the association free energy compared to the wild-type oligomers at neutral pH and the E22Q mutants. The neutralization of the peptides because of the E22Q mutation only marginally affects the association free energy, with the reduction of the direct electrostatic interactions mostly compensated by the unfavorable electrostatic solvation effects. For the wild-type oligomers at acidic conditions such compensation is not complete, and the electrostatic interactions, along with the gas-phase nonpolar energetic and the overall entropic effects, contribute to the lowering of the association free energy. The differences in the association thermodynamics between the wild-type Abeta(17-42) oligomers at neutral pH and the Dutch mutants, on the one hand, and the Abeta(17-42) oligomers with protonated Glu(22), on the other, may be explained by destabilization of the inter- and intrapeptide salt bridges between Asp(23) and Lys(28). Peculiarities in the conformational stability and the association thermodynamics for the different models of the Abeta(17-42) oligomers are rationalized based on the analysis of the local physical interactions and the microscopic solvation structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808487 | PMC |
http://dx.doi.org/10.1016/j.bpj.2009.09.062 | DOI Listing |
Chemphyschem
July 2018
Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea.
Various cytotoxic mechanisms for neurodegenerative disease are induced by specific conformations of Aβ intermediates. The efforts to understand the diverse intermediate forms of amyloid oligomers have been focused on understanding the aggregation mechanism of specific morphologies for Aβ intermediates. However, these are still not easy tasks to be accomplished because the diverse conformations of Aβ intermediates can be altered during the aggregation process, even though the same Aβ monomers are present.
View Article and Find Full Text PDFThe crucial role of water in amyloid-β(Aβ) fibril proteins is evaluated in several ways including the water's thermodynamic and kinetic solvation effects. As regards the water's character, its hindered-rotation barriers are also considered. The following protein molecules considered here are: the Aβ40 (PDB ID: 2LMN), Aβ42 (PDB ID: 5KK3 and 2NAO) and the double-layered Aβ17-42 fibril.
View Article and Find Full Text PDFJ Pept Sci
November 2017
Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China.
The oligomerization and fibrillation of β-amyloid (Aβ) peptides are important events in the pathogenesis of Alzheimer's disease. However, the motifs within the Aβ sequence that contribute to oligomerization and fibrillation and the complex interplay among these short motifs are unclear. In this study, the oligomerization and fibrillation abilities of the Aβ variants Aβ1-28, Aβ1-36, Aβ11-42, Aβ17-42, Aβ1-40 and Aβ1-42 were examined by thioflavin T fluorescence, western blotting and transmission electron microscopy.
View Article and Find Full Text PDFProtein Pept Lett
October 2017
Molecular Modelling & Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur-784 028, Assam. India.
Background: Recent experiments with Amyloid β1-42 peptide have indicated that the initial dimerization of Aβ1-42 monomers to form amyloid dimers stand out as a key event in the generation of toxic oligomers. However, the structural characterization of Aβ1-42 dimer at the atomistic level and the dimerization mechanism by which Aβ1-42 peptides co-aggregate still remains not clear.
Objective: In the present study, the process of Aβ17-42 peptide dimerization which is known to play an important role in the plaque formation in Alzheimer's disease was evaluated in terms of potential of mean force.
PLoS One
May 2016
Unidad de Investigación Médica en Enfermedades Metabólicas, Hospital de CardiologÃa, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México D.F., México.
The increasing prevalence of conformational diseases, including Alzheimer's disease, type 2 Diabetes Mellitus and Cancer, poses a global challenge at many different levels. It has devastating effects on the sufferers as well as a tremendous economic impact on families and the health system. In this work, we apply a cross-functional approach that combines ideas, concepts and technologies from several disciplines in order to study, in silico and in vitro, the role of a novel chemical chaperones family (NCHCHF) in processes of protein aggregation in conformational diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!