Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Allostery in the binding of peptides to DNA has been studied by quantitative DNase I footprinting using four newly designed peptides containing the XP(Hyp)RK motif and N-methylpyrrole (Py) moieties. Apparent binding constants in the micromolar range as well as Hill coefficients were determined for each peptide. The results, together with previous studies on five other peptides support the proposal that interaction network cooperativity is highly preferred in DNA-peptide interactions that involve multiple recognition sites. It is envisaged that interstrand bidentate interactions participate in the relay of conformational changes between recognition sites on the complementary strands. Models for interpreting DNA allostery based upon interaction networks are outlined. Circular dichroism experiments involving the titration of peptides against a short oligonucleotide duplex indicate that some of these peptides bind in a dimeric manner to DNA via the minor groove, inducing characteristic conformational changes. These insights should prompt the design of new DNA-binding peptides for investigating allosteric interactions between peptides and DNA, as well as novel interaction networks, and ultimately may shed light upon the fundamental chemical rules that govern allostery in more complex biological process such as DNA-protein interaction networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2010.02.047 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!