The objectives of this study were to determine the concentration of endotoxin, determine 20 water quality variables, and identify and enumerate fungal and bacterial pathogens from United States southern High Plains dairy lagoons and control lakes during summer and winter. Water samples were collected in triplicate from the north, south, east, and west quadrants of each body of water. The mean (+/- SEM) winter dairy lagoon endotoxin concentration was significantly higher (9,678+/-1,834 ng/mL) than the summer concentration (3,220+/-810 ng/mL). The mean endotoxin concentration of the 2 control lakes (summer: 58.1+/-8.8 ng/mL; winter: 38.6+/-4.2 ng/mL) was significantly less than that of the dairy lagoons. Two hundred-one Salmonella enterica spp. isolates were identified, 7 serovars were recovered from the dairy lagoons, and 259 Salmonella ssp. were identified from 5 other dairy locations (milk barn, ditch effluent, settling basin, feed alley pad flush, and center pivots). Twenty-eight Salmonella spp. were identified from center pivot water. Escherichia coli O157:H7 pathogens were isolated from other dairy locations but not from lagoons. Neither Salmonella spp. nor E. coli O157:H7 were identified from control lakes. Enterobacteriaceae opportunistic pathogens were isolated from both dairies and control lakes. Important mesophilic and thermophilic catabolic (to manure biosolids) fungal isolates were identified from dairy effluent locations, but no thermophilic fungal isolates were cultured from the control lakes. Adequate curing of green forage following center pivot irrigation is important to kill lagoon water enteric pathogens, even though the lagoon water is mixed with fresh water. Recirculating lagoon water to flush the feed alley pad, where cows stand while eating, to remove manure and using lagoon water to abate dairy dust in loafing pens and unimproved dairy roads is inconsistent with good environmental practice management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2009-2497 | DOI Listing |
Biol Trace Elem Res
January 2025
Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.
View Article and Find Full Text PDFNano Lett
January 2025
Shanghai Applied Radiation Institute, Shanghai Key Laboratory of Atomic Control and Application of Inorganic 2D Supermaterials, State Key Lab. Advanced Special Steel, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai 200444, China.
As representative examples of inorganic ionic crystals, NaCl and KCl usually form cubes during the natural evaporation process. Herein, we report the hopper-like NaCl and KCl crystals formed on the iron surface under rapid vacuum evaporation aided by organic molecules. Theoretical and experimental results indicate that it is attributed to the organic molecules alternating adsorption between {100} and {110} surfaces instead of adsorbing a single surface, as well as the fast crystal growth rate.
View Article and Find Full Text PDFEnviron Entomol
January 2025
Cornell Cooperative Extension - Lake Ontario Fruit Program, Albion, NY, USA.
The non-native wood-boring and symbiotic fungus-culturing Xylosandrus germanus (Blandford) was first reported in New York apple orchards in 2013. Trapping surveys have been conducted annually since to assist growers in timely applications of preventative control measures. In 2021, a similar-looking introduced species, Anisandrus maiche (Kurentsov), was identified in traps in west central New York.
View Article and Find Full Text PDFInnovation (Camb)
January 2025
Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming 650500, China.
Environ Res
January 2025
Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China. Electronic address:
Global change stressors, including climate warming, eutrophication, and small-sized omnivorous fish, may exert interactive effects on the food webs and functioning of shallow lakes. Periphyton plays a central role in the primary production and nutrient cycling of shallow lakes but constitutes a complex community composed of eukaryotes and prokaryotes that may exhibit different responses to multiple environmental stressors with implications for the projections of the effects of global change on shallow lakes. We analyzed the effects of warming, nutrient enrichment, small omnivorous fish and their interactions on eukaryotic and prokaryotic periphyton structures in shallow lake mesocosms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!