Antidepressants have been shown to be neuroprotective and able to reverse damage to glia and neurons. Thyrotropin-releasing hormone (TRH) is an endogenous antidepressant-like neuropeptide that reduces the expression of glycogen synthase kinase-3beta (GSK-3beta), an enzyme that hyperphosphorylates tau and is implicated in bipolar disorder, diabetes and Alzheimer's disease. In order to understand the potential role of GSK-3beta in the modulation of depression by TRH and TRH-like peptides and the therapeutic potential of GSK-3beta inhibitors for neuropsychiatric and metabolic diseases, young adult male Sprague-Dawley (SD) rats were (a) injected ip with 1.8mg/kg of GSK-3beta inhibitor VIII (GSKI) and sacrificed 0, 2, 4, 6, and 8h later or (b) injected with 0, 0.018, 0.18 or 1.8mg/kg GSKI and bled 4h later. Levels of TRH and TRH-like peptides were measured in various brain regions involved in mood regulation, pancreas and reproductive tissues. Large, 3-15-fold, increases of TRH and TRH-like peptide levels in cerebellum, for example, as well as other brain regions were noted at 2 and 4h. In contrast, a nearly complete loss of TRH and TRH-like peptides from testis within 2h and pancreas by 4h following GSKI injection was observed. We have previously reported similar acute effects of corticosterone in brain and peripheral tissues. Incubation of a decapsulated rat testis with either GSKI or corticosterone accelerated release of TRH, and TRH-like peptides. Glucocorticoids, via inhibition of GSK3-beta activity, may thus be involved in the inhibition of TRH and TRH-like peptide release in brain, thereby contributing to the depressogenic effect of this class of steroids. Corticosterone-induced acceleration of release of these peptides from testis may contribute to the decline in reproductive function and redirection of energy needed during life-threatening emergencies. These contrasting effects of glucocorticoid on peptide release appear to be mediated by GSK-3beta.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.peptides.2010.03.020 | DOI Listing |
Int J Toxicol
July 2023
Consultant in Toxicologic Pathology, Tel Aviv and Tel Aviv University, Tel Aviv, Israel.
Thyrotropin-releasing hormone (TRH) and TRH-like peptides carry a therapeutic potential for neurological conditions. Nanoparticles (NP) made of the biodegradable polymer, Poly(Sebacic Anhydride) (PSA), have been developed to carry TRH, intended for intranasal administration to patients. There is limited information on the safety of biodegradable polymers when given intranasally, and therefore, we have performed two preclinical safety and toxicity studies in cynomolgus monkeys and rats using TRH-PSA nanoparticles.
View Article and Find Full Text PDFEndocrinol Diabetes Metab
September 2022
Research, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Introduction: Resveratrol and related polyphenols have therapeutic effects ranging from treatment of depression, Alzheimer's and Parkinson's disease, obesity, diabetes, neurodegeneration and ageing. TRH and TRH-like peptides, with the structure pGlu-X-Pro-NH , where 'X can be any amino acid reside, have reproductive, caloric-restriction-like, anti-ageing, pancreatic-β cell-enhancing, cardiovascular and neuroprotective effects. We hypothesize that TRH and TRH-like peptides are mediators of the therapeutic actions of the resveratrol derivative pterostilbene (PT).
View Article and Find Full Text PDFBMC Neurosci
February 2022
Research Services, VA Greater Los Angeles Healthcare System, Bldg. 114, Rm. 229B, 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA.
Background: The TRH/TRH-R1 receptor signaling pathway within the neurons of the dorsal vagal complex is an important mediator of the brain-gut axis. Mental health and protection from a variety of neuropathologies, such as autism, Attention Deficit Hyperactivity Disorder, Alzheimer's and Parkinson's disease, major depression, migraine and epilepsy are influenced by the gut microbiome and is mediated by the vagus nerve. The antibiotic rifaximin (RF) does not cross the gut-blood barrier.
View Article and Find Full Text PDFInt J Neurosci
August 2022
Autonomic Neuroscience Centre, University College Medical School, London.
Introduction: The role of extra-hypothalamic thyrotropin-releasing hormone (TRH) has been investigated by pharmacological studies using TRH or its analogues and found to produce a wide array of effects in the central nervous system.
Methods: Immunofluorescence, In situ labeling of DNA (TUNEL), hybridization chain reaction and quantitative real-time polymerase chain reaction were used in this study.
Results: We found that the granular cells of the dentate gyrus expressed transiently a significant amount of TRH-like immunoreactivity and TRH mRNA during the 6-24 h period following global cerebral ischemia/reperfusion injury.
Proc Natl Acad Sci U S A
May 2017
Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium;
In vertebrates thyrotropin-releasing hormone (TRH) is a highly conserved neuropeptide that exerts the hormonal control of thyroid-stimulating hormone (TSH) levels as well as neuromodulatory functions. However, a functional equivalent in protostomian animals remains unknown, although TRH receptors are conserved in proto- and deuterostomians. Here we identify a TRH-like neuropeptide precursor in that belongs to a bilaterian family of TRH precursors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!