Aims: Loss of magnesium (Mg(2+)) inhibits cell proliferation and augments nephrotoxicant-induced renal injury, but the role of Mg(2+) has not been clarified in detail. We examined the effect of extracellular Mg(2+) deprivation on a MEK-ERK cascade and cell proliferation using a renal epithelial cell line, Madin-Darby canine kidney (MDCK) cells.
Main Methods: MDCK cells were cultured in Mg(2+)-containing or Mg(2+)-free media. A HA-tagged constitutively active (CA)-MEK1 and a dominant negative (DN)-MEK1 were transfected into MDCK cells. The level of protein was examined by Western blotting. The intracellular free Mg(2+) concentration ([Mg(2+)](i)) was measured using a fluorescent dye, mag-fura 2. Cell proliferation was determined by WST-1 assay. Dead cells were identified by staining with annexin V-FITC and propidium iodide.
Key Findings: In the presence of fetal calf serum (FCS), Mg(2+) deprivation decreased phosphorylated-ERK1/2 (p-ERK1/2) levels and [Mg(2+)](i). Re-addition of Mg(2+) increased p-ERK1/2 levels, which were inhibited by U0126, a specific inhibitor of a MEK-ERK cascade. Glutathione-S-transferase pull-down and coimmunoprecipitation assays showed that CA-MEK1 and DN-MEK1 binds with ERK1/2 in the presence of Mg(2+). In contrast, neither CA-MEK1 nor DN-MEK1 bound to ERK1/2 in the absence of Mg(2+). These results indicate that the MEK-ERK cascade is regulated by [Mg(2+)](i). Cell proliferation was increased by the treatment with FCS or the expression of CA-MEK1 in the presence of Mg(2+), but was inhibited by Mg(2+) deprivation. Mg(2+) deprivation did not increase the number of dead cells.
Significance: Mg(2+) is involved in the regulation of the MEK-ERK cascade and cell proliferation in MDCK cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2010.03.016 | DOI Listing |
Plant Cell Rep
January 2025
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.
View Article and Find Full Text PDFJ Math Biol
January 2025
Institut universitaire de France (IUF), Paris, France.
We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere length and its age. We study its Malthusian's behaviour and provide numerical simulations to understand the influence of biologically relevant parameters.
View Article and Find Full Text PDFCytotherapy
January 2025
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. Electronic address:
Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.
View Article and Find Full Text PDFMol Ther
January 2025
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China, 200241. Electronic address:
CAR T-cell therapy has achieved remarkable clinical success in treating hematological malignancies. However, its clinical efficacy in solid tumors is less satisfactory, partially due to poor in vivo expansion and limited persistence of CAR-T cells. Here, we demonstrated that the overexpression of glucocorticoid-induced tumor necrosis factor receptor-related protein ligand (GITRL) enhances the anti-tumor activity of CAR-T cells.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!