Lactic acid bacterial strains have received interest for their immunomodulating activities and potential use in probiotic products. A wide variety of strain-dependent properties have been reported, but comparative studies at the species level are scarce. The objective of this study was to assess the immunomodulatory effect of Lactobacillus species on the cytokine profiles and proliferative response of human peripheral blood mononuclear cells (hPBMC), and in particular, on the comparison between the species Lactobacillus acidophilus and Lactobacillus plantarum. hPBMC from healthy donors were stimulated in the presence or absence of the lactic acid bacteria, and cytokine production, surface marker staining, proliferation and cell death were determined after 1 and 4 days of culture. All Lactobacillus strains tested were capable of inducing the production of interleukin (IL)-1beta, IL-10, interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). The bacterial strains did not differentially influence the amount of proliferating, viable, apoptotic and necrotic cells. Generally, L. plantarum showed a significantly higher induction capacity of IFN-gamma, IL-12 and TNF-alpha compared with L. acidophilus. We conclude that the variation in immunomodulatory effects between species is even larger than the variation between the strains of the same species. In addition, we demonstrate that L. plantarum strains are most potent in skewing the T-cell differentiation toward a putative Th1 response.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-695X.2010.00662.xDOI Listing

Publication Analysis

Top Keywords

lactobacillus acidophilus
8
acidophilus lactobacillus
8
lactobacillus plantarum
8
plantarum strains
8
human peripheral
8
peripheral blood
8
blood mononuclear
8
mononuclear cells
8
lactic acid
8
bacterial strains
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!