The red palm weevil Rhynchophorus ferrugineus Olivier (Curculionidae/Rhynchophoridae/Dryophthoridae) is a lethal pest of young coconut palms, Cocos nucifera L. (Arecales: Arecaceae), with a highly aggregated population distribution pattern. R. ferrugineus is managed in several coconut growing countries using area-wide pheromone based programmes that need a substantial commitment of funds over a period of time. Often, decisions to implement area-wide management of R. ferrugineus are based on pheromone trap captures in surveillance traps and or infestation reports. Implementing area-wide management of this pest on the basis of such data can be inaccurate, as it may either under or over estimate the pest intensity in the field. This study presents sampling plans for rapid and accurate classification of R. ferrugineus infestation in coconut plantations of India by inspecting palms to detect infestation in a sequence until a decision to either implement or not to initiate area-wide management of R. ferrugineus can be made. The sampling plans are based on a common aggregation index of 3.45, assumed action threshold values of either 1.0 (plan A) or 0.5 (plan B) per cent infested palms and a risk factor of making the wrong decision set at 0.05. Using plans A and B, if the cumulative number of infested palms in a young 1 hectare coconut plantation is zero out of 150 palms for both plans, then area-wide management is not required, while on the other hand, if the cumulative number of infested palms for the same area is 6 (plan A), or 5 (plan B), then area-wide management of R. ferrugineus is essential. The proposed sampling plans are efficient tools in decision making, particularly at very low and high levels of infestation and can also be used to assess the performance of R. ferrugineus IPM programmes that are in progress. These plans not only save time and money as only a small area needs to be sampled to arrive at a correct decision, but are also efficient in rating the infestation level accurately.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3061587 | PMC |
http://dx.doi.org/10.1673/031.008.1501 | DOI Listing |
Tsetse flies and trypanosomosis significantly impact bovine production and human health in sub-Saharan Africa, exacerbating underdevelopment, malnutrition, and poverty. Despite various control strategies, long-term success has been limited. This study evaluates the combined use of entomopathogenic fungi (EPF) and the sterile insect technique (SIT) to combat tsetse flies.
View Article and Find Full Text PDFJ Econ Entomol
November 2024
Department of Entomology, National Chung-Hsing University, Taichung City, Taiwan.
Fungus-growing termites (Termitidae: Macrotermitinae) exhibit significant diversity and abundance in tropical and subtropical ecosystems. Fungus-growing termites consume a wide range of materials, including leaf litter, woody debris, agricultural crops, and wooden structures, including houses. Their presence in termite baiting stations can impede the control of other residential termite pests, such as Coptotermes spp.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2024
College of Plant Protection, Nanjing Agricultural University / State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China. Electronic address:
The brown planthopper (BPH), Nilaparvata lugens (Stål), is a notorious pest affecting Asian rice crops. The evolution of insecticide resistance in BPH has emerged as a significant challenge in effectively managing this pest. This study revealed the resistance status of BPH to nine insecticides in ten provinces and Shanghai City in China from 2020 to 2023.
View Article and Find Full Text PDFCurr Opin Insect Sci
December 2024
ICAR-Indian Institute of Horticultural Research, Bengaluru 560089, India. Electronic address:
Insects
July 2024
ASTRA Innovazione e Sviluppo Test Facility, 48018 Faenza, Italy.
The brown marmorated stink bug (BMSB), (Stål) (Hemiptera: Pentatomidae), is causing extensive economic losses in tree fruit crops. Including attract-and-kill (AK) strategies targeting BMSBs in an integrated pest management framework could reduce the amounts of insecticides sprayed and benefit growers, consumers and the environment. This study evaluated the effectiveness of an area-wide AK strategy across an intensive fruticulture region of Northern Italy, comparing four paired pear sites with and without two AK stations ha.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!