Interactions between flow and biological cells and tissues are intrinsic to the circulatory, respiratory, digestive and genitourinary systems. In the circulatory system, an understanding of the complex interaction between the arterial wall (a living multi-component organ with anisotropic, nonlinear material properties) and blood (a shear-thinning fluid with 45% by volume consisting of red blood cells, platelets, and white blood cells) is vital to our understanding of the physiology of the human circulation and the etiology and development of arterial diseases, and to the design and development of prosthetic implants and tissue-engineered substitutes. Similarly, an understanding of the complex dynamics of flow past native human heart valves and the effect of that flow on the valvular tissue is necessary to elucidate the etiology of valvular diseases and in the design and development of valve replacements. In this paper we address the influence of biomechanical factors on the arterial circulation. The first part presents our current understanding of the impact of blood flow on the arterial wall at the cellular level and the relationship between flow-induced stresses and the etiology of atherosclerosis. The second part describes recent advances in the application of fluid-structure interaction analysis to arterial flows and the dynamics of heart valves.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864728 | PMC |
http://dx.doi.org/10.1007/s10439-010-9900-1 | DOI Listing |
Neurol Res
January 2025
Department of Physiology, Faculty of Medicine, Izmir Democracy University, Izmır, Turkey.
Objective: Within the scope of this research, the long-term effects of experimental blunt head trauma on immature rats and MK-801 administered acutely after trauma on the brain tissue will be examined. In addition, the impact of trauma and MK-801 on Nestin and CD133, which are essential stem cells, will be evaluated by immunohistochemical and ELISA methods.
Methods: In this study, the contusion trauma model was used.
Eur J Oral Sci
January 2025
Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea.
The periodontal ligament (PDL) is a connective tissue, and PDL cells have a potential to differentiate into cementoblasts, osteoblasts, and gingival fibroblasts. This study investigated whether transcription factor c-Myb could induce differentiation of PDL cells for periodontal regeneration. PDL cells were isolated from extracted teeth and cultured.
View Article and Find Full Text PDFCancer Med
February 2025
Centre for Medical Research, Ningbo No.2 Hospital, Ningbo, China.
Background: Hepatocellular carcinoma (HCC) is one of the most common and highly lethal cancers worldwide. RIO kinase 1 (RIOK1), a protein kinase/ATPase that plays a key role in regulating translation and ribosome assembly, is associated with a variety of malignant tumors. However, the role of RIOK1 in HCC remains largely unknown.
View Article and Find Full Text PDFInt J Gynaecol Obstet
January 2025
Center for Reproductive Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
Objective: Polycystic ovary syndrome (PCOS) is a diverse condition with an unknown cause. The precise mechanism underlying ovulatory abnormalities in PCOS remains unclear. It is widely believed that malfunction of granulosa cells is the primary factor contributing to aberrant follicular formation in PCOS.
View Article and Find Full Text PDFBioelectromagnetics
January 2025
Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, Washington, DC, USA.
Cancer remains a formidable global health challenge, necessitating the development of innovative diagnostic techniques capable of early detection and differentiation of tumor/cancerous cells from their healthy counterparts. This review focuses on the confluence of advanced computational algorithms with noninvasive, label-free impedance-based biophysical methodologies-techniques that assess biological processes directly without the need for external markers or dyes. This review elucidates a diverse array of state-of-the-art impedance-based technologies, illuminating distinct electrical signatures inherent to cancer vs healthy tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!