Caspases, cystein proteases traditionally related to programmed cell death, have recently been found to be involved in vital processes such as cell proliferation, adhesion and differentiation. Although caspases are expressed in mouse embryos before the blastocyst stage, their role is unclear, since apoptosis does not occur significantly before implantation. In this work, we have used mouse preimplantation development as a model to evaluate the existence of non-lethal caspase activities. The use of specific caspase inhibitors during in vitro embryo culture showed that caspase 8 activity, but not caspase 2 or 9, was relevant for development. The inhibition of caspase 8 affected the compaction of morulae and the progression to the blastocyst stage. In agreement with these results, caspase 8 was expressed in mouse embryos, as shown by indirect immunofluorescence and RT-PCR. An in silico approach was used to find putative caspase targets expressed in mouse preimplantation embryos. Large-scale management of sequence data from mouse embryos was used to predict caspase substrates by tools matrix-based on known cleavage sites. A total of 510 potential caspase targets expressed in mouse embryos were identified by this procedure. The functional characterization of these proteins by Gene Onthology associations showed that many of these putative caspase targets were previously related to non-apoptotic functions and only 63 had been previously reported to be actually cleaved by caspases. Interestingly, eleven knockout mice models for caspase substrates identified in our work, i.e. catenin alpha and beta, geminin, pescadillo, calpain-2, have preimplantation lethal phenotypes. This work supports the involvement of caspases in vital functions during mouse preimplantation development and proposes a model in which the regulated cleavage of caspase substrates could account for this role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1387/ijdb.092921db | DOI Listing |
Mol Ther
January 2025
Department of Molecular Medicine, University of Southern Denmark; Odense, 5230, Denmark. Electronic address:
Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:
Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.
View Article and Find Full Text PDFMol Ther
January 2025
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China, 200241. Electronic address:
CAR T-cell therapy has achieved remarkable clinical success in treating hematological malignancies. However, its clinical efficacy in solid tumors is less satisfactory, partially due to poor in vivo expansion and limited persistence of CAR-T cells. Here, we demonstrated that the overexpression of glucocorticoid-induced tumor necrosis factor receptor-related protein ligand (GITRL) enhances the anti-tumor activity of CAR-T cells.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFJ Transl Med
January 2025
Medical School of Nanjing University, Nanjing, 210093, China.
Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!