Currently, one approach to tissue engineering has been to develop in vitro conditions to fabricate functional cardiovascular structures such as heart valves before final implantation. In vivo conditions are simulated using a bioreactor system that supplies cells with oxygen and culture media while providing mechanical stimulation to promote tissue maturation. In our experiment, we developed a novel combined optical monitoring and conditioning device. The entire system is made of acrylic glass and is completely transparent. The bioreactor is connected to an air-driven respirator pump, and the cell culture medium continuously circulates through a closed-loop system. By adjusting stroke volume, stroke rate, and inspiration/expiration time of the ventilator, the system allows various pulsatile flows and different levels of pressure. Our optical monitoring and conditioning device provides a sterile environment, mechanical stimulation, and optical monitoring for the in vitro maturation of a tissue-engineered heart valve. With the camera module attached, tissue-engineered valves can be observed during the entire in vitro phase. This setting helps to find the optimal dynamic conditions for tissue-engineered heart valves to mature by adjusting flow and pressure conditions to provide physiological opening and closing behavior of the heart valve construct.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MAT.0b013e3181cf3bdd | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!