Background: In cartilage repair, bioregenerative approaches using tissue engineering techniques have tried to achieve a close resemblance to hyaline cartilage, which might be visualized using advanced magnetic resonance imaging.

Purpose: To compare cartilage repair tissue at the femoral condyle noninvasively after matrix-associated autologous chondrocyte transplantation using Hyalograft C, a hyaluronic-based scaffold, to cartilage repair tissue after transplantation using CaReS, a collagen-based scaffold, with magnetic resonance imaging using morphologic scoring and T2 mapping.

Study Design: Cohort study; Level of evidence, 3.

Methods: Twenty patients after matrix-associated autologous chondrocyte transplantation (Hyalograft C, n = 10; CaReS, n = 10) underwent 3-T magnetic resonance imaging 24 months after surgery. Groups were matched by age and defect size/localization. For clinical outcome, the Brittberg score was assessed. Morphologic analysis was applied using the magnetic resonance observation of cartilage repair tissue score, and global and zonal biochemical T2 mapping was performed to reflect biomechanical properties with regard to collagen matrix/content and hydration.

Results: The clinical outcome was comparable in each group. The magnetic resonance observation of cartilage repair tissue score showed slightly but not significantly (P= .210) better results in the CaReS group (76.5) compared to the Hyalograft C group (70.0), with significantly better (P= .004) constitution of the surface of the repair tissue in the CaReS group. Global T2 relaxation times (milliseconds) for healthy surrounding cartilage were comparable in both groups (Hyalograft C, 49.9; CaReS, 51.9; P= .398), whereas cartilage repair tissue showed significantly higher results in the CaReS group (Hyalograft C, 48.2; CaReS, 55.5; P= .011). Zonal evaluation showed no significant differences (P > or = .05).

Conclusion: Most morphologic parameters provided comparable results for both repair tissues. However, differences in the surface and higher T2 values for the cartilage repair tissue that was based on a collagen scaffold (CaReS), compared to the hyaluronic-based scaffold, indicated differences in the composition of the repair tissue even 2 years postimplantation.

Clinical Relevance: In the follow-up of cartilage repair procedures using matrix-associated autologous chondrocyte transplantation, differences due to scaffolds have to be taken into account.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0363546509354971DOI Listing

Publication Analysis

Top Keywords

cartilage repair
36
repair tissue
36
magnetic resonance
20
matrix-associated autologous
16
autologous chondrocyte
16
chondrocyte transplantation
16
repair
12
cares group
12
tissue
10
cartilage
10

Similar Publications

Subchondral insufficiency fracture of the knee.

Orthopadie (Heidelb)

January 2025

Department of Orthopedic Surgery, Mayo Clinic, 200 First St. SW, 55905, Rochester, MN, USA.

Subchondral insufficiency fractures of the knee (SIFK) are a relatively common cause of knee pain, particularly in middle-aged and older adults. The SIFK is a type of stress fracture that occurs when excessive and repetitive or supraphysiologic loads are applied to subchondral bone [1]. Historically, this type of fracture was termed spontaneous osteonecrosis of the knee (SONK) until advances in MRI identified underlying fractures as well as meniscal deficiency as likely attributable etiologies.

View Article and Find Full Text PDF

Scaffolds made from cartilage extracellular matrix are promising materials for articular cartilage repair, attributed to their intrinsic bioactivity that may promote chondrogenesis. While several cartilage matrix-based scaffolds have supported chondrogenesis and/or , it remains a challenge to balance the biological response (e.g.

View Article and Find Full Text PDF

Background: Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function.

View Article and Find Full Text PDF

Chitosan, a biodegradable and biocompatible natural polymer composed of β-(1-4)-linked -acetyl glucosamine (GlcNAc) and d-glucosamine (GlcN) and derived from crustacean shells, has been widely studied for various biomedical applications, including drug delivery, cartilage repair, wound healing, and tissue engineering, because of its unique physicochemical properties. One of the most promising areas of research is the investigation of the immunomodulatory properties of chitosan, since the biopolymer has been shown to modulate the maturation, activation, cytokine production, and polarization of dendritic cells and macrophages, two key immune cells involved in the initiation and regulation of innate and adaptive immune responses, leading to enhanced immune responses. Several signaling pathways, including the cGAS-STING, STAT-1, and NLRP3 inflammasomes, are involved in chitosan-induced immunomodulation.

View Article and Find Full Text PDF

Background: Medial meniscus posterior root tears (MMPRTs) significantly contribute to knee dysfunction, leading to abnormal biomechanics and accelerated cartilage degeneration. Arthroscopic transtibial pullout and all-inside repair are two commonly used techniques for treating MMPRTs, each with unique advantages and limitations.

Objective: To compare the clinical and functional outcomes of the transtibial pullout and all-inside repair techniques in the treatment of MMPRTs, with a focus on postoperative recovery, knee function, and complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!