Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Alzheimer's disease (AD) is a progressive neurological disorder that causes dementia and poses a major public health crisis as the population ages. Aberrant processing of the amyloid precursor protein (APP) is strongly implicated as a proximal event in AD pathophysiology, but the neurochemical signals that regulate APP processing in the brain are not completely understood. Activation of muscarinic acetylcholine receptors (mAChRs) has been shown to affect APP processing and AD pathology, but less is known about the roles of specific mAChR subtypes. In this study, we used M(1) mAChR knock-out mice (M(1)KO) to isolate the effects of the M(1) mAChR on APP processing in primary neurons and on the development of amyloid pathology in a transgenic mouse model of AD. We demonstrate that the loss of M(1) mAChRs increases amyloidogenic APP processing in neurons, as evidenced by decreased agonist-regulated shedding of the neuroprotective APP ectodomain APPsalpha and increased production of toxic Abeta peptides. Expression of M(1) mAChRs on the M(1)KO background rescued this phenotype, indicating that M(1) mAChRs are sufficient to modulate nonamyloidogenic APP processing. In APP(Swe/Ind) transgenic mice, the loss of M(1) mAChRs resulted in increased levels of brain Abeta and greater accumulation of amyloid plaque pathology. Analysis of APP metabolites in APP(Swe/Ind) brain tissue indicates that the loss of M(1) mAChRs increases amyloidogenic APP processing. These results indicate that the M(1) mAChR is an important regulator of amyloidogenesis in the brain and provide strong support for targeting the M(1) mAChR as a therapeutic candidate in AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855655 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.6393-09.2010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!