Extracellular matrices play important, but poorly investigated, roles in morphogenesis. Extracellular cellulose is central to regulation of pattern formation in plants, but among metazoans only tunicates are capable of cellulose biosynthesis. Cellulose synthase (CesA) gene products are present in filter-feeding structures of all tunicates and also regulate metamorphosis in the ascidian Ciona. Ciona CesA is proposed to have been acquired by lateral gene transfer from a prokaryote. We identified two CesA genes in the sister-class larvacean Oikopleura dioica. Each has a mosaic structure of a glycoslyltransferase 2 domain upstream of a glycosyl hydrolase family 6 cellulase-like domain, a signature thus far unique to tunicates. Spatial-temporal expression analysis revealed that Od-CesA1 produces long cellulose fibrils along the larval tail, whereas Od-CesA2 is responsible for the cellulose scaffold of the post-metamorphic filter-feeding house. Knockdown of Od-CesA1 inhibited cellulose production in the extracellular matrix of the larval tail. Notochord cells either failed to align or were misaligned, the tail did not elongate properly and tailbud embryos also exhibited a failure to hatch. Knockdown of Od-CesA2 did not elicit any of these phenotypes and instead caused a mild delay in pre-house formation. Phylogenetic analyses including Od-CesAs indicate that a single lateral gene transfer event from a prokaryote at the base of the lineage conferred biosynthetic capacity in all tunicates. Ascidians possess one CesA gene, whereas duplicated larvacean genes have evolved distinct temporal and functional specializations. Extracellular cellulose microfibrils produced by the pre-metamorphic Od-CesA1 duplicate have a role in notochord and tail morphogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.044503 | DOI Listing |
Heliyon
January 2025
Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Kemivägen 10, 41296 Gothenburg.
Bulky cellulosic network structures (BRC) with densities between 60 and 130 g/l were investigated as a sustainable alternative to fossil-based foams for impact liners in bicycle helmets. The mechanical properties of BRC foams were characterized across a wide range of strain rates and incorporated into a validated finite element model of a hardshell helmet. Virtual impact tests simulating both consumer information and certification scenarios were conducted to compare BRC-lined helmets against conventional expanded polystyrene (EPS) designs.
View Article and Find Full Text PDFPlant Dis
January 2025
Microbiology, Campus Universitário s/n, Viçosa, Minas Gerais, Brazil, 36570-000;
The Ralstonia solanacearum Species Complex (RSSC) is the most significant plant pathogen group with a wide host range. It is genetically related but displays distinct biological features, such as restrictive geography occurrence. The RSSC comprises three species: Ralstonia pseudosolanacearum (phylotype I and III), Ralstonia solanacearum (phylotype IIA and IIB), and Ralstonia syzygii (phylotype IV) (Fegan and Prior 2005).
View Article and Find Full Text PDFBiol Futur
January 2025
Physics Department, Faculty of Science, Istanbul University, Istanbul, Türkiye.
Tree bark is an important natural polymer for sound absorption. The main components in the bark of different tree species are polymers with high molecular weight such as cellulose, hemicellulose, and lignin. The aim of this study is to determine the noise reduction coefficient (NRC), lignin, alcohol-benzene solubility (ABS), carbon (C), and nitrogen (N) contents in samples taken from the bark of different tree species-black locust (Robinia pseudoacacia), narrow-leaved ash (Fraxinus angustifolia), stone pine (Pinus pinea), silver lime (Tilia tomentosa), sweet chestnut (Castanea sativa), sessile oak (Quercus petraea), and maritime pine (Pinus pinaster) and to investigate the relationship between these chemical properties and sound absorption measurements.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China. Electronic address:
Conductive hydrogel has drawn great concern in wearable sensors, human-machine interfaces, artificial intelligence (AI), health monitoring, et al. But it still remains challenge to develop hydrogel through facile and sustainable methods. In this work, a conductive, flexible, bendable, and self-healing hydrogel (PBCM) composed of polyvinyl alcohol (PVA), borax, cellulose microfibers (CMFs), and MXene nanosheet was fabricated by a simple and efficient strategy.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China. Electronic address:
To this day, energy conservation, emission reduction, and environmental protection continue to be goals pursued by humanity. Passive radiation cooling, as a zero-consumption refrigeration technology, offers substantial opportunities for reducing global energy consumption and carbon dioxide emissions. It is of great significance to develop high-performance passive radiation cooling materials from sustainable materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!