Renal-specific oxido-reductase/myoinositol oxygenase (RSOR/MIOX) is expressed in renal tubules. It catabolizes myo-inositol and its expression is increased in diabetic mice and in LLC-PK(1) cells under high-glucose ambience. Aldose reductase (AR) is another aldo-keto reductase that is expressed in renal tubules. It regulates the polyol pathway and plays an important role in glucose metabolism, osmolyte regulation, and ECM pathobiology via the generation of advanced glycation end products, reactive oxygen species, and activation of transforming growth factor (TGF)-beta. In view of the similarities between AR and RSOR/MIOX, the pathobiology of RSOR/MIOX and some of the cellular pathways affected by its overexpression were investigated. An increased expression of fibronectin was noted by transfection of LLC-PK(1) cells with pcDNA3.1-RSOR/MIOX. Similar changes were observed in LLC-PK(1) cells under high-glucose ambience, and they were notably lessened by RSOR/MIOX-small interfering (si) RNA treatment. The changes in tubulointerstitial fibronectin expression were also observed in the kidneys of db/db mice having high levels of RSOR. The pcDNA3.1-RSOR/MIOX transfectants had an increased NADH/NAD(+) ratio, PKC and TGF-beta activity, Raf1:Ras association, and p-ERK phosphorylation. These changes were significantly reduced by the inhibitors of PKC, aldose reductase, Ras farnesylation, and MEK1. Similar increases in various the above-noted parameters were observed under high-glucose ambience. Such changes were partially reversed with RSOR-siRNA treatment. Expression of E-cadherin and vimentin paralleled in cells overexpressing RSOR/MIOX or subjected to high-glucose ambience. These studies suggest that RSOR/MIOX modulates various downstream pathways affected by high-glucose ambience, and conceivably it plays a role in the pathobiology of tubulointerstitium in diabetic nephropathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886816 | PMC |
http://dx.doi.org/10.1152/ajprenal.00137.2010 | DOI Listing |
Cell Death Dis
October 2023
Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
Autophagy of endoplasmic reticulum (ER-phagy) selectively removes damaged ER through autophagy-lysosome pathway, acting as an adaptive mechanism to alleviate ER stress and restore ER homeostasis. However, the role and precise mechanism of ER-phagy in tubular injury of diabetic kidney disease (DKD) remain obscure. In the present study, we demonstrated that ER-phagy of renal tubular cells was severely impaired in streptozocin (STZ)-induced diabetic mice, with a decreased expression of phosphofurin acidic cluster sorting protein 2 (PACS-2), a membrane trafficking protein which was involved in autophagy, and a reduction of family with sequence similarity 134 member B (FAM134B), one ER-phagy receptor.
View Article and Find Full Text PDFInt J Cardiol
February 2023
Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India. Electronic address:
Background: Diabetic cardiomyopathy (DCM) is one of the severe complications of diabetes with no known biomarkers for early detection. Mitochondria-associated endoplasmic reticulum membranes (MAM) are less studied subcellular targets but an emerging area for exploration in metabolic disorders including DCM. We herein studied the role of MAMs and downstream mitochondrial functions in DCM.
View Article and Find Full Text PDFBiosci Rep
January 2020
Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China.
High glucose (HG)-induced mitochondrial dynamic changes and oxidative damage are closely related to the development and progression of diabetic kidney disease (DKD). Recent studies suggest that regulators of calcineurin 1 (RCAN1) is involved in the regulation of mitochondrial function in different cell types, so we investigate the role of RCAN1 in mitochondrial dynamics under HG ambience in rat glomerular mesangial cells (MCs). MCs subjected to HG exhibited an isoform-specific up-regulation of RCAN1.
View Article and Find Full Text PDFEBioMedicine
May 2019
Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. Electronic address:
Background: The mitochondrial associated endoplasmic reticulum (ER) membrane (MAM) provides a platform for communication between the mitochondria and ER, and it plays a vital role in many biological functions. Disulphide-bond A oxidoreductase-like protein (DsbA-L), expressed in the MAM, serves as an antioxidant and reduces ER stress. However, the role of DsbA-L and MAM in kidney pathobiology remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!