The effects of off-resonance irradiation in 2D exchange NMR at zero-field are analysed. A theoretical treatment of the 2D exchange NMR pulse sequence is presented and applied to the quantitative study of exchange processes in molecular crystals. It takes into account the off-resonance irradiation, which critically influences the spin dynamics. The response of a system of spins I=3/2 in zero applied field to the three-pulse sequence is analysed. The mixing dynamics by exchange and the expected cross-peak intensities as a function of the frequency offset has been derived. It is shown that the off-resonance effects are of crucial importance for the quantitative description of the exchange spectra. The theory is successfully tested for the exchange spectra of hindered trichloromethyl groups of p-chloroanilinium trichloroacetate, where the conventional approach without taking into account the off-resonance phenomena has failed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ssnmr.2010.03.001 | DOI Listing |
Unlabelled: Proton exchange is a fundamental chemical event, and NMR provides the most direct readout of protonation events with site-specific resolution. Conventional approaches require manual titration of sample pH to collect a series of NMR spectra at different pH values. This requires extensive sample handling and often results in significant sample loss, leading to reduced signal or the need to prepare additional samples.
View Article and Find Full Text PDFAutism is a heterogeneous condition, and functional magnetic resonance imaging-based studies have advanced understanding of neurobiological correlates of autistic features. Nevertheless, little work has focused on the optimal brain states to reveal brain-phenotype relationships. In addition, there is a need to better understand the relevance of attentional abilities in mediating autistic features.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.
View Article and Find Full Text PDFMagn Reson Imaging
January 2025
Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA. Electronic address:
Purpose: Diffusion-weighted arterial spin labeling (DW-ASL) MRI has been proposed to determine the rate of water exchange (K) across the blood brain barrier (BBB). This study aims to further evaluate K MRI by comparing it with standard dynamic contrast-enhanced (DCE) MRI and histology in association with mannitol-induced disruption of the BBB.
Methods: DW-ASL was measured using a multiple b-value MRI protocol in normal rats at three post-labeling delays (N = 19), before and after intra-carotid injection of mannitol to disrupt BBB in one hemisphere (N = 13).
MAGMA
January 2025
Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, 28359, Bremen, Germany.
Objectives: Caffeine, a known neurostimulant and adenosine antagonist, affects brain physiology by decreasing cerebral blood flow. It interacts with adenosine receptors to induce vasoconstriction, potentially disrupting brain homeostasis. However, the impact of caffeine on blood-brain barrier (BBB) permeability to water remains underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!