The aqueous phase speciation and chemistry of cobalt in terrestrial environments.

Chemosphere

UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.

Published: May 2010

The solution speciation of a metal has a critical influence on its biological activity in the environment and is now an important focus of research. In this review, pertinent aspects related to the aqueous speciation and chemistry of cobalt (Co) in terrestrial environments are critically assessed. Although there is a lack of comprehensive data on aqueous Co concentrations in soil porewaters, groundwaters and surface waters, existing reports indicate that natural Co concentrations vary within a picomolar to micromolar range. Cobalt chemistry is dominated by the Co(II) oxidation state in the aqueous phase of terrestrial environments primarily due to the extremely low solubility of Co(III). There is no universal agreement on the importance of Co(II) complexation in the solution phase of terrestrial environments and, furthermore, on the nature of the major binding organic ligands. The kinetics of Co(II) complexation to, and dissociation from, natural organic complexing ligands are such that the speciation of Co is likely to significantly diverge from estimates based on thermodynamic equilibrium calculations. As a result, an accurate understanding of Co bioavailability, toxicity and transport in terrestrial aquatic environments will only be achieved when thermodynamics can be reconciled with reaction kinetics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2010.03.003DOI Listing

Publication Analysis

Top Keywords

terrestrial environments
16
aqueous phase
8
speciation chemistry
8
chemistry cobalt
8
cobalt terrestrial
8
phase terrestrial
8
coii complexation
8
terrestrial
5
environments
5
aqueous
4

Similar Publications

Divergent responses of plant multi-element coupling to nitrogen and phosphorus addition in a meadow steppe.

BMC Plant Biol

January 2025

Institute of Grassland Science, School of Life Sciences, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.

The intricate biogeochemical cycling of multiple elements plays a pivotal role in upholding a myriad of ecosystem functions. However, our understanding of elemental stoichiometry and coupling in response to global changes remains primarily limited to plant carbon: nitrogen: phosphorus (C: N: P). Here, we assessed the responses of 11 elements in plants from different functional groups to global changes.

View Article and Find Full Text PDF

Bacterial and fungal diversity and species interactions inversely affect ecosystem functions under drought in a semi-arid grassland.

Microbiol Res

January 2025

Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China. Electronic address:

Extreme climatic events, such as drought, can significantly alter belowground microbial diversity and species interactions, leading to unknown consequences for ecosystem functioning. Here, we simulated a drought gradient by removing 30 %, 50 %, and 70 % of precipitation in a semi-arid grassland over five years. We assessed the effects of drought on bacterial and fungal diversity, as well as on their species interactions.

View Article and Find Full Text PDF

The oceanic dissolved organic matter (DOM) reservoir is one of Earth's largest carbon pools, yet the factors contributing to its recalcitrance and persistence remain poorly understood. Here, we employed ultra-high resolution mass spectrometry (UHRMS) to examine the molecular dynamics of DOM from terrestrial, marine and mixed sources during bio-incubation over weekly, monthly, and one year time spans. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), we classified DOM into three distinct categories (Consumed, Resistant and Product) based on their presence or absence at the start and end of the incubation.

View Article and Find Full Text PDF

Polyethylene nanoplastics (NPs) are widely diffused in terrestrial environments, including soil ecosystems, but the stress mechanisms in plants are not well understood. This study aimed to investigate the effects of two increasing concentrations of NPs (20 and 200 mg kg of soil) in lettuce. To this aim, high-throughput hyperspectral imaging was combined with metabolomics, covering both primary (using NMR) and secondary metabolism (using LC-HRMS), along with lipidomics profiling (using ion-mobility-LC-HRMS) and plant performance.

View Article and Find Full Text PDF

Ecosystem functioning and management are primarily concerned with addressing climate change and biodiversity loss, which are closely linked to carbon stock and species diversity. This research aimed to quantify forest understory (shrub and herb) diversity, tree biomass and carbon sequestration in the Binsar Wildlife Sanctuary. Using random sampling methods, data were gathered from six distinct forest communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!