Bisphenol A diglycidyl ether (BADGE) is an epoxide that is used as a starting substance in the manufacture of can coatings for food-contact applications. Following migration from the can coating into food, BADGE levels decay and new reaction products are formed by reaction with food ingredients. The significant decay of BADGE was demonstrated by liquid chromatographic (LC) analysis of foodstuffs, that is, tuna, apple puree, and beer, spiked with BADGE before processing and storage. Life-science inspired analytical approaches were successfully applied to study the reactions of BADGE with food ingredients, for example, amino acids and sugars. An improved mass balance of BADGE was achieved by selective detection of reaction products of BADGE with low molecular weight food components, using a successful combination of stable isotopes of BADGE and analysis by LC coupled to fluorescence detection (FLD) and high-resolution mass spectrometric (MS) detection. Furthermore, proteomics approaches showed that BADGE also reacts with peptides (from protein digests in model systems) and with proteins in foods. The predominant reaction center for amino acids, peptides, and proteins was cysteine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf904160a | DOI Listing |
Chemistry
January 2025
Indian Institute of Science Education and Research Bhopal Department of Chemistry, Chemistry, Room No. 226, Academic Block - 2, Indore By-pass Road, Bhauri, 462066, Bhopal, INDIA.
Unraveling the electronic structure of metal complexes can bring various catalytic possibilities for hydrogen evolution reaction (HER). However, the electronic effect of metal and ligands modulating and switching the reaction center for HER has yet to be comprehensively analyzed. Herein, we report nickel selenoether electrocatalysts which show tunable reaction centers (nickel or ligand) for HER using mild weak acetic acid in less deprotonating DMF solvent.
View Article and Find Full Text PDFJMIR Med Inform
January 2025
School of Software, Taiyuan University of Technology, Jingzhong, China.
Background: The prompt and accurate identification of mild cognitive impairment (MCI) is crucial for preventing its progression into more severe neurodegenerative diseases. However, current diagnostic solutions, such as biomarkers and cognitive screening tests, prove costly, time-consuming, and invasive, hindering patient compliance and the accessibility of these tests. Therefore, exploring a more cost-effective, efficient, and noninvasive method to aid clinicians in detecting MCI is necessary.
View Article and Find Full Text PDFImmunol Res
January 2025
Immunology Laboratory, Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92 APC Road, Calcutta, 700009, West Bengal, India.
Septic arthritis (SA) caused by Staphylococcus aureus is a severe inflammatory joint disease, characterized by synovitis accompanied with cartilage destruction and bone erosion. The available antibiotic treatment alone is insufficient to resolve the inflammation that leads to high rates of morbidity and mortality. Among the CD4 T helper lymphocytes, the Th17 and Tregs are key regulators of immune homeostasis.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, PR China.
Based on the enhanced peroxidase-like activity of carbon dots nanozymes (CDszymes), with a specific oxidation reaction of D-amino acid oxidase catalysing the formation of HO from D-amino acid, an ultrasensitive sensing platform, was constructed for the quantitative detection of D-amino acids in saliva. With the increase of D-amino acids concentration, the blue color of catalytic product gradually deepend, the fluorescence CDszymes gradually quenched, and the temperature gradually increased. Using D-alanine as D-amino acid models, the detection limits of D-alanine in colorimetric/photothermal/fluorescent mode were 0.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
Bacterial infections can lead to severe medical complications, including major medical incidents and even death, posing a significant challenge in clinical trauma repair. Consequently, the development of new, efficient, and non-resistant antimicrobial agents has become a priority for medical practitioners. In this study, a stepwise hydrothermal reaction strategy is utilized to prepare FeO@MoS core-shell nanoparticles (NPs) with photosynthesis-like activity for the treatment of bacterial infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!