Ionizing radiation (IR) is a pro-oxidant that kills cells by both apoptotic and necrotic mechanisms. Pyrrolidine dithiocarbamate (PDTC) is a thiol-containing compound that may act either as a pro- or anti-oxidant depending on the experimental conditions. This study was designed to determine whether PDTC would reduce or enhance IR-induced cell death of freshly-isolated normal mouse B6/129 spleen cells (NMSC). We determined the effect of increasing doses of IR, PDTC alone and PDTC followed by IR on the viability of NMSC. Annexin V and propidium iodide (Annexin V/PI) staining demonstrated a dose and time-dependent relationship in which PDTC enhanced the percentage of IR-induced apoptotic/necrotic NMSC. Trypan blue dye inclusion confirmed that a loss of membrane integrity was occurring 1 h after incubation with PDTC plus IR. Reduction in the glutathione (GSH)/glutathione disulfide (GSSG) ratio and GSH demonstrated that both IR (8.5 Gy) and PDTC acted as pro-oxidants, but their mechanisms of action differed: In contrast to IR, which promoted p53 activation and caspase 3/7-mediated apoptosis, PDTC inhibited IR-induced p53 and caspase 3/7 activity. However, PDTC increased H(2)O(2) formation and necrosis, resulting in an overall increase in IR-induced cell death. Catalase prevented the PDTC-induced increase in IR cytotoxicity implicating the generation of H(2)O(2) as a major factor in this mechanism. These results demonstrate that in NMSC PDTC acts as pro-oxidant and enhances IR-induced cell cytotoxicity by increasing H(2)O(2)formation and thiol oxidation. As such, they strongly suggest that the use of PDTC as an adjunct to reduce radiation toxicity should be avoided.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10495-010-0487-7DOI Listing

Publication Analysis

Top Keywords

pdtc
12
ir-induced cell
12
pyrrolidine dithiocarbamate
8
dithiocarbamate pdtc
8
freshly-isolated normal
8
normal mouse
8
spleen cells
8
cell death
8
ir-induced
5
pdtc blocks
4

Similar Publications

We investigated the protective effect of the NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC) on cardiomyocyte injury induced by HCN1 channel overexpression, and explored the underlying mechanisms. An HCN1 overexpression vector was constructed and transfected into H9C2 cells, followed by PDTC treatment. The experiments comprised the following groups: control, control + PDTC, overexpression negative control, HCN1 overexpression (HCN1-OE), and combined HCN1-OE + PDTC groups.

View Article and Find Full Text PDF

Purpose: Long noncoding RNAs (lncRNAs) play crucial regulatory roles in the tumorigenesis and progression of various cancers. However, the functional roles of lncRNAs in papillary thyroid cancer (PTC) remain unclear. In this study, we investigated the functional role of the lncRNA FAM111A-DT in PTC progression and the underlying mechanisms.

View Article and Find Full Text PDF

The Effect of Clostridium butyricum-Derived Lipoteichoic Acid on Lipopolysaccharide-Stimulated Porcine Intestinal Epithelial Cells.

Vet Med Sci

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Background: Clostridium butyricum is a probiotic widely used in animal husbandry, and there is evidence to suggest that it can alleviate intestinal inflammation in pigs and may be related to its lipoteichoic acid (LTA), but the mechanism is still unclear.

Objective: This study aimed to determine the regulatory effect and potential mechanism of C. butyricum LTA on LPS-stimulated inflammation in intestinal porcine epithelial line-J2 (IPEC-J2).

View Article and Find Full Text PDF

Objective: Heart failure (HF) causes structural and functional changes in the heart, with the pyroptosis-mediated inflammatory response as the core link in HF pathogenesis. E3 ubiquitin ligases participate in cardiovascular disease progression. Here, we explored the underlying molecular mechanisms of E3 ubiquitin ligase Smurf1 in governing HF.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is frequently associated with intestinal comorbidities. Damage to the intestinal barrier plays a crucial role in these disorders, leading to increased intestinal and systemic inflammation, and thereby promoting the progression of COPD. This study aims to investigate the mechanism of intestinal epithelial barrier damage, focusing on the roles of the Aryl hydrocarbon Receptor (AhR) and NF-κB in COPD-related intestinal damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!