Desert locust (Schistocerca gregaria) outbreaks have occurred repeatedly throughout recorded history in the Horn of Africa region, devastating crops and contributing to famines. In June 2009, a desert locust swarm invaded the Guassa Plateau, Ethiopia, a large and unusually intact Afroalpine tall-grass ecosystem, home to important populations of geladas (Theropithecus gelada), Ethiopian wolves (Canis simensis), thick-billed ravens (Corvus crassirostris), and other Ethiopian or Horn of Africa endemics. During the outbreak and its aftermath, we observed many animals, including geladas, ravens, and a wolf, feeding on locusts in large quantities. These observations suggest surprising flexibility in the normally highly specialized diets of geladas and wolves, including the potential for temporary but intensive insectivory during locust outbreaks. To our knowledge, Guassa is the highest elevation site (3,200-3,600 m) at which desert locusts, which require temperatures >20 degrees C for sustained flight, have been reported. Continued monitoring will be necessary to determine whether the June 2009 outbreak was an isolated incident or part of an emerging pattern in the Ethiopian Highlands linked to global warming. The intensive consumption of desert locusts by geladas, wolves, and ravens during the outbreak at Guassa raises concerns about pesticide-based locust control strategies and potential unintended adverse effects on endemic and endangered wildlife.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10329-010-0194-6DOI Listing

Publication Analysis

Top Keywords

desert locust
12
outbreak guassa
8
horn africa
8
june 2009
8
geladas wolves
8
desert locusts
8
desert
5
locust
5
behavior geladas
4
geladas endemic
4

Similar Publications

Mathematical assessment of the role of temperature on desert locust population dynamics.

PLoS One

January 2025

School of Mathematics and Statistics, College of Science, Rochester Institute of Technology, Rochester, New York, United States of America.

This study presents a novel non-autonomous mathematical model to explore the intricate relationship between temperature and desert locust population dynamics, considering the influence of both solitarious and gregarious phases across all life stages. The model incorporates temperature-dependent parameters for key biological processes, including egg development, hopper growth, adult maturation, and reproduction. Theoretical analysis reveals the model's capacity for complex dynamical behaviors, such as multiple stable states and backward bifurcations, suggesting the potential for sudden and unpredictable population shifts.

View Article and Find Full Text PDF

Adapting distribution patterns of desert locusts, in response to global climate change.

Bull Entomol Res

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China.

The desert locust () is a destructive migratory pest, posing great threat to over 60 countries globally. In the backdrop of climate change, the habitat suitability of desert locusts is poised to undergo alterations. Hence, investigating the shifting dynamics of desert locust habitats holds profound significance in ensuring global agricultural resilience and food security.

View Article and Find Full Text PDF

Desert locusts, notorious for their ruinous impact on agriculture, threaten over 20% of Earth's landmass, prompting billions in losses and global food scarcity concerns. With billions of these locusts invading agrarian lands, this is no longer a thing of the past. Recent invasions, such as those in India, where losses reached US$ 3 billion in 2019-20 alone, underscore the urgency of action.

View Article and Find Full Text PDF

Resilin, an elastomeric protein with remarkable physical properties that outperforms synthetic rubbers, is a near-ubiquitous feature of the power amplification mechanisms used by jumping insects. Catapult-like mechanisms, which incorporate elastic energy stores formed from a composite of stiff cuticle and resilin, are frequently used by insects to translate slow muscle contractions into rapid-release recoil movements. The precise role of resilin in these jumping mechanisms remains unclear, however.

View Article and Find Full Text PDF

Accurate navigation often requires the maintenance of a robust internal estimate of heading relative to external surroundings. We present a model for angular velocity integration in a desert locust heading circuit, applying concepts from early theoretical work on heading circuits in mammals to a novel biological context in insects. In contrast to similar models proposed for the fruit fly, this circuit model uses a single 360° heading direction representation and is updated by neuromodulatory angular velocity inputs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!