Selection is thought to be partially responsible for patterns of molecular evolution at synonymous sites within numerous Drosophila species. Recently, "per-site" and likelihood methods have been developed to detect loci for which positive selection is a major component of synonymous site evolution. An underlying assumption of these methods, however, is a homogeneous mutation process. To address this potential shortcoming, we perform a complementary analysis making gene-by-gene comparisons of paired synonymous site and intron substitution rates toward and away from the nucleotides G and C because preferred codons are G or C ending in Drosophila. This comparison may reduce both the false-positive rate (due to broadscale heterogeneity in mutation) and false-negative rate (due to lack of power comparing small numbers of sites) of the per-site and likelihood methods. We detect loci with patterns of evolution suggestive of synonymous site selection pressures predominately favoring unpreferred and preferred codons along the Drosophila melanogaster and Drosophila sechellia lineages, respectively. Intron selection pressures do not appear sufficient to explain all these results as the magnitude of the difference in synonymous and intron evolution is dependent on recombination environment and chromosomal location in a direction supporting the hypothesis of selectively driven synonymous fixations. This comparison identifies 101 loci with an apparent switch in codon preference between D. melanogaster and D. sechellia, a pattern previously only observed at the Notch locus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817403PMC
http://dx.doi.org/10.1093/gbe/evp008DOI Listing

Publication Analysis

Top Keywords

synonymous site
12
evolution synonymous
8
synonymous sites
8
drosophila melanogaster
8
melanogaster drosophila
8
drosophila sechellia
8
sechellia lineages
8
likelihood methods
8
detect loci
8
preferred codons
8

Similar Publications

Revealing the Potential-Dependent Rate-Determining Step of Oxygen Reduction Reaction on Single-Atom Catalysts.

J Am Chem Soc

January 2025

Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.

Single-atom catalysts (SACs) have attracted widespread attention due to their potential to replace platinum-based catalysts in achieving efficient oxygen reduction reaction (ORR), yet the rational optimization of SACs remains challenging due to their elusive reaction mechanisms. Herein, by employing ab initio molecular dynamics simulations and a thermodynamic integration method, we have constructed the potential-dependent free energetics of ORR on a single iron atom catalyst dispersed on nitrogen-doped graphene (Fe-N/C) and further integrated these parameters into a microkinetic model. We demonstrate that the rate-determining step (RDS) of the ORR on SACs is potential-dependent rather than invariant within the operative potential range.

View Article and Find Full Text PDF

Coronaviruses (CoVs) encode non-structural proteins (nsp's) 1-16, which assemble to form replication-transcription complexes that function in viral RNA synthesis. All CoVs encode a proofreading 3'-5' exoribonuclease in non-structural protein 14 (nsp14-ExoN) that mediates proofreading and high-fidelity replication and is critical for other roles in replication and pathogenesis. The enzymatic activity of nsp14-ExoN is enhanced in the presence of the cofactor nsp10.

View Article and Find Full Text PDF

Zellweger syndrome; identification of mutations in and gene in Saudi families.

Ann Med

December 2025

Department of Basic Medical Sciences, College of Medicine & Center for Genetics and Inherited Diseases, Taibah University Medina, Medina, Saudi Arabia.

Background: Peroxisome biogenesis disorders (PBD) affect multiple organ systems. It is characterized by neurological dysfunction, hypotonia, ocular anomalies, craniofacial abnormalities, and absence of peroxisomes in fibroblasts. PBDs are associated with mutations in any of fourteen different genes, which are involved in peroxisome biogenesis.

View Article and Find Full Text PDF

Developmental language disorder (DLD) is a neurodevelopmental disorder involving impaired language abilities. Its genetic etiology is heterogeneous, involving rare variations in multiple susceptibility loci. However, family-based studies on gene mutations are scarce.

View Article and Find Full Text PDF

Whole genome and transcriptome analyses in dairy goats identify genetic markers associated with high milk yield.

Int J Biol Macromol

December 2024

Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China. Electronic address:

Milk production is the most important economic trait of dairy goats and a key indicator for genetic improvement and breeding. However, milk yield is a complex phenotypic trait, and its genetic mechanisms are still not fully understood. This study focuses on dairy goats and non-dairy goats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!