A detailed study of a new method of determining the optical properties of absorbing materials is presented. It makes use of normal incidence reflectances from the specimen itself (R(s)) and from the specimen coated with a transparent film of two different thicknesses but of the same refractive index (R(1s) and R(2s)) in the form of R(1s)/R(s) and R(2s)/R(s)- It is seen that a simple goniometer can be easily adopted for measuring the reflectance ratios over a wide spectral range. The versatility of the method has been proved by the fact that it has been successfully adopted for specimens with surface structures varying from atomically smooth to rough surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.20.002747DOI Listing

Publication Analysis

Top Keywords

absorbing materials
8
optical constants
4
constants absorbing
4
materials approach
4
approach detailed
4
detailed study
4
study method
4
method determining
4
determining optical
4
optical properties
4

Similar Publications

Biosorption performance toward Co(II) and Cd(II) by irradiated Fusarium solani biomass.

Environ Geochem Health

January 2025

Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.

Fusarium solani biomass plays a significant role in water pollution remediation due to its ability to sequester heavy metals, particularly cobalt (Co(II)) and cadmium (Cd(II)), which pose severe environmental and health risks. This study aimed to identify fungi from sewage-contaminated sites and evaluate their efficiency in absorbing and reducing Co(II) and Cd(II) ions. The biosorption potential of irradiated Fusarium solani biomass for removing Co(II) and Cd(II) ions from aqueous solutions was investigated.

View Article and Find Full Text PDF

W/Mo/Cr Doping Modulates the Negative-Positive Inversion Gas Sensing Behavior of VO(M1).

ACS Sens

January 2025

Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan.

The anomalous gas sensing behavior has garnered significant attention from researchers, prompting a re-evaluation of the gas sensing theory. This work focuses on inversion gas sensing behavior induced by element doping. W/Mo/Cr-doped VO(M1) samples are synthesized, and their sensing behaviors are investigated.

View Article and Find Full Text PDF

An in situ monitoring reaction can better obtain the variations during the progression of the photocatalytic reaction. However, the complexity of the apparatus and the limited applicability of substances are the common challenges faced by most in situ monitoring methods. Here, we invented an in situ infrared optical fiber sensor to monitor the reactants and products during photocatalytic reaction.

View Article and Find Full Text PDF

Polymer composite materials encounter considerable challenges in sustaining superior tribological properties at high rotational speeds. Inspired by the microstructure of dragonfly wings, a novel thermally stable and ambient pressure curing poly(urea-imide) resin (PURI) with excellent tribological properties has been eco-friendly synthesis using bio-based greener solvents. Furthermore, The PURI composites enhanced with polyether ether ketone (PEEK) and Polytetrafluoroethylene (PTFE) blended fabrics demonstrate excellent mechanical, with tensile strengths exceeding 175 MPa.

View Article and Find Full Text PDF

Cu(In, Ga)S demonstrates potential as a top cell material for tandem solar cells. However, achieving high efficiencies has been impeded by open-circuit voltage (V) deficits arising from In-rich and Ga-rich composition segregation in the absorber layer. This study presents a significant improvement in the optoelectronic quality of Cu(In, Ga)S films through the mitigation of composition segregation in three-stage co-evaporated films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!