The rheology of granular materials near an interface is investigated through proton magnetic resonance imaging. A new cylinder shear apparatus has been inserted in the magnetic resonance imaging device, which allows the control of the radial confining pressure exerted by the outer wall on the grains and the measurement of the torque on the inner shearing cylinder. A multi-layer velocimetry sequence has been developed for the simultaneous measurement of velocity profiles in different sample zones, while the measurement of the solid fraction profile is based on static imaging of the sample. This study describes the influence of the roughness of the shearing interface and of the transverse confining walls on the granular interface rheology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2010.01.007DOI Listing

Publication Analysis

Top Keywords

granular interface
8
interface rheology
8
cylinder shear
8
shear apparatus
8
magnetic resonance
8
resonance imaging
8
mri investigation
4
investigation granular
4
interface
4
rheology cylinder
4

Similar Publications

This is a retrospective cross-sectional diagnostic test accuracy study of direct immunofluorescence (DIF) performed on a group of potential lupus erythematosus (LE)/dermatomyositis (DM) skin biopsies from 2015 to 2020 at a large, academic medical center. For purposes of this study, which was focused primarily on detection of LE/DM-related interface dermatitis, DIF was considered positive for a LE/DM pattern if it showed granular deposition of immunoglobulin G, with or without C3, at the basement membrane zone on the final pathology report. Blinded clinicopathologic correlation was the reference standard.

View Article and Find Full Text PDF

Epithelial cell collectives migrate through tissue interfaces and crevices to orchestrate development processes, tumor invasion, and wound healing. Naturally, the traversal of cell collective through confining environments involves crowding due to narrowing spaces, which seems tenuous given the conventional inverse relationship between cell density and migration. However, the physical transitions required to overcome such epithelial densification for migration across confinements remain unclear.

View Article and Find Full Text PDF

Exchange-Biased Fe/FeF Nanocomposites: Unveiling the Structural Insights into Spin-Dependent Tunnel Transport.

ACS Appl Mater Interfaces

January 2025

Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan.

Spin-dependent charge tunneling transport of magnetic nanocomposites under alternating current or direct current has revolutionized the understanding of the quantum-mechanical phenomenon in complex granular solids. The tunnel magnetodielectric (TMD) and tunnel magnetoresistance (TMR) effects are two critical functionalities in this context, where dielectric permittivity and electrical resistance, respectively, change in response to an applied magnetic field due to charge tunneling. However, the structural correlation between TMD and TMR, as well as the mechanisms, remains poorly understood, largely due to the challenges in directly characterizing nanoscale intergranular interactions.

View Article and Find Full Text PDF

The stress status of a soil pressure cell placed in soil is very different from its stress state in a uniform fluid medium. The use of the calibration coefficient provided by the soil pressure cell manufacturer will produce a large error. In order to improve the measurement accuracy of the interface-type earth pressure cell placed in soil, this paper focuses on a single-membrane resistive earth pressure cell installed on the surface of a structure, analyzing the influence of loading and unloading cycles, the thickness and particle size of the sand filling, and the depth of the earth pressure cell inserted in the structure on the calibration curve and matching error, which were analyzed through calibration tests.

View Article and Find Full Text PDF

Expanding clinical spectrum of PAICS deficiency: Comprehensive analysis of two sibling cases.

Eur J Hum Genet

November 2024

Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.

De novo synthesis of purines (DNPS) is a biochemical pathway that provides the purine bases for synthesis of essential biomolecules such as nucleic acids, energy transfer molecules, signaling molecules and various cofactors. Inborn errors of DNPS enzymes present with a wide spectrum of neurodevelopmental and neuromuscular abnormalities and accumulation of characteristic metabolic intermediates of the DNPS in body fluids and tissues. In this study, we present the second case of PAICS deficiency due to bi-allelic variants of PAICS gene encoding for a missense p.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!