In search of augmentation at human SI: Somatosensory cortical responses to stimulus trains and their modulation by motor activity.

Brain Res

BioMag Laboratory, Engineering Centre, Department of Clinical Neurophysiology, University of Helsinki, Helsinki, Finland.

Published: May 2010

In many animal preparations, repeated stimulation at ca. 10 Hz in thalamic nuclei leads to rapid changes in the cortical evoked responses, known as the augmenting response. The present study was undertaken to evaluate whether anything similar to the augmenting response can be observed in awake human subjects when a peripheral nerve is stimulated, and whether a possible human correlate of augmenting would be modified when the subject is engaged in an active motor task. Somatosensory-evoked magnetic fields (SEFs) were recorded in healthy human subjects in response to stimulus trains (15 pulses at 10 Hz) applied to the left median nerve. SEFs were recorded in a resting condition and during a finger-tapping task performed with the stimulated hand. In the resting condition, the most marked change in the SEF configuration was a reduction of the P35m deflection and a concurrent enhancement of the N45m deflection during the 1st few stimuli of the trains. Another conspicuous feature was a prolongation of the latencies of the N45m and P60m deflections toward the end of the train. In the motor task, the response modulation during the pulse trains was in general similar to the resting condition. The most notable difference was that the P35m amplitude was markedly reduced already for the 1st pulse of the train when compared with rest. Also, the latencies of N45m and P60m were not prolonged during the train. We discuss the possibility that the reduction of P35m and a concurrent increase of N45m during a pulse train constitute a human analogue to the augmenting response, and suggest that these changes may reflect a decrease of inhibitory postsynaptic potentials (IPSPs, P35m) and an increase of secondary excitatory postsynaptic potentials (N45m) during stimulus train presentation. The reduction of P35m during motor activity compared with rest already at the beginning of stimulus trains suggests that postsynaptic IPSPs in response to afferent stimulation are reduced during active movement. Otherwise the short-term plastic changes were similar during rest and motor activity. Finally, the results suggest slowing down of intracortical network processing with repeated stimulation, and that this slowing is not present during an active motor task which depends on afferent feedback information.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2010.03.058DOI Listing

Publication Analysis

Top Keywords

stimulus trains
12
motor activity
12
augmenting response
12
motor task
12
resting condition
12
reduction p35m
12
repeated stimulation
8
human subjects
8
active motor
8
sefs recorded
8

Similar Publications

Discriminative stimulus properties of α-ethyltryptamine (α-ET) in rats: α-ET-like effects of MDMA, MDA and aryl-monomethoxy substituted derivatives of α-ET.

Psychopharmacology (Berl)

December 2024

Department of Medicinal Chemistry, School of Pharmacy, Medical College of Virginia Campus, Virginia Commonwealth University, 800 E. Leigh St., STE 205, Richmond, VA, 23219-0540, USA.

Rationale α-ET (α-ethyltryptamine), a homolog of the classical hallucinogen α-methyltryptamine, was once prescribed clinically as an antidepressant. Classical psychedelic drugs are currently of interest as potential pharmacotherapy for psychiatric disorders. Objectives Drug discrimination was used to (a) determine if α-ET-like stimulus effects could be engendered by the prototypical phenylalkylamines MDMA ("Ecstasy") or MDA ("Love Drug") and (b) evaluate the α-ET-like stimulus effects of four synthesized aryl-substituted monomethoxy analogs of α-ET (4-OMe-, 5-OMe-, 6-OMe- and 7-OMe-α-ET).

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) and cerebrovascular diseases (CeVDs) are closely related vascular diseases, sharing common cardiometabolic risk factors (RFs). Although pleiotropic genetic variants of these two diseases have been reported, their underlying pathological mechanisms are still unclear. Leveraging GWAS summary data and using genetic correlation, pleiotropic variants identification, and colocalization analyses, we identified 11 colocalized loci for CVDs-CeVDs-BP (blood pressure), CVDs-CeVDs-LIP (lipid traits), and CVDs-CeVDs-cIMT (carotid intima-media thickness) triplets.

View Article and Find Full Text PDF

Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior.

View Article and Find Full Text PDF

French and German poetry are classically considered to utilize fundamentally different linguistic structures to create rhythmic regularity. Their metrical rhythm structures are considered poetically to be very different. However, the biophysical and neurophysiological constraints upon the speakers of these poems are highly similar.

View Article and Find Full Text PDF

What are the potential mechanisms of fatigue-induced skeletal muscle hypertrophy with low-load resistance exercise training?

Am J Physiol Cell Physiol

December 2024

Muscle Health Research Centre, School of Kinesiology & Health Science, Faculty of Health, York University, Toronto, ON, Canada.

High-load resistance exercise (>60% of 1-repetition maximum) is a well-known stimulus to enhance skeletal muscle hypertrophy with chronic training. However, studies have intriguingly shown that low-load resistance exercise training (RET) (≤60% of 1-repetition maximum) can lead to similar increases in skeletal muscle hypertrophy as compared to high-load RET. This has raised questions about the underlying mechanisms for eliciting the hypertrophic response with low-load RET.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!