The plasma form of PAF-AH [PAF (platelet-activating factor) acetylhydrolase; also known as LpPLA(2) (lipopoprotein-associated phospholipase A(2)), PLA(2)G7] catalyses the release of sn-2 fatty acyl residues from PAF, oxidatively fragmented phospholipids, and esterified isoprostanes. The plasma levels of this enzyme vary widely among mammalian species, including mice and humans, but the mechanisms that account for these differences are largely unknown. We investigated the basis for these variations using molecular and biochemical approaches. We identified an N-terminal domain that played key roles in the determination of steady-state expression levels. The mouse N-terminal domain robustly enhanced protein expression levels, possibly owing to its ability to adopt a globular conformation that is absent in the human protein. We investigated the mechanism(s) whereby the N-terminal stretch modulated PAF-AH levels and found that differential expression was not due to variations in the efficiency of transcription, translation, or mRNA stability. Studies designed to evaluate the ability of precursor forms of PAF-AH to mature to fully active proteins indicated that the N-terminal end of human and mouse PAF-AH played important and opposite roles in this process. These domains also modulated the levels of expression of an unrelated polypeptide by affecting the stability of precursor forms of the protein. These studies provide insights that contribute to our understanding of the molecular features and mechanisms that contribute to differential expression of plasma PAF-AH in mammals.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20100039DOI Listing

Publication Analysis

Top Keywords

platelet-activating factor
8
factor acetylhydrolase
8
n-terminal domain
8
expression levels
8
differential expression
8
precursor forms
8
expression
6
paf-ah
5
levels
5
novel mechanism
4

Similar Publications

Introduction: Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that affects various body systems, including the skin and facial features. Estrogen promotes lupus in human and mouse models of SLE. In this study, we conducted an in vivo study to investigate the relationship between two estrogen receptors (ERα and ERβ) and platelet-activating factor acetylhydrolase (PAF-AH) on the symptoms of SLE.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.

Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.

View Article and Find Full Text PDF

Winery By-Products and Effects on Atherothrombotic Markers: Focus on Platelet-Activating Factor.

Front Biosci (Landmark Ed)

January 2025

Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece.

Platelet aggregation and inflammation play a crucial role in atherothrombosis. Wine contains micro-constituents of proper quality and quantity that exert cardioprotective actions, partly through inhibiting platelet-activating factor (PAF), a potent inflammatory and thrombotic lipid mediator. However, wine cannot be consumed extensively due to the presence of ethanol.

View Article and Find Full Text PDF

Marine organisms, including shrimps, have gained research interest due to containing an abundance of bioactive lipid molecules.This study evaluated the composition and the in vitro biological activities of amphiphilic bioactive compounds from four different wild shrimp species: , , , and . Total lipid (TL) extracts were obtained from shrimp and separated into total amphiphilic (TAC) and total lipophilic (TLC) compounds.

View Article and Find Full Text PDF

Thromboxane A (TXA), a prothrombotic factor that induces platelet aggregation and thrombosis, acts as a vasoconstrictor by activating TXA receptors (TP receptors). TXA is extremely unstable and metabolizes into three major metabolites: 2,3-dinor thromboxane B (2,3-dinor-TXB), 11-dehydro TXB(11-dh-TXB), and 11-dehydro-2,3-dinor TXB(11-dh-2,3-dinor-TXB). 8-Iso-prostaglandin F(8-iso-PGF), a prostaglandin-like compound widely considered the best biomarker of oxidative stress, can also activate TP receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!