We demonstrate that activation of nuclear factor kappaB (NF-kappaB) in neurons is neuroprotective in response to kainic acid (KA)-induced excitotoxicity. Combination of Western blotting, immunocytochemistry, and electrophoresis mobility shift assay showed that KA exposure induced a fast but transient nuclear translocation of the NF-kappaB p65 subunit and increased DNA-binding activity of NF-kappaB in primary cultured cortical neurons. The transient NF-kappaB activity was associated with upregulation of antiapoptotic Bcl-xL and XIAP gene products revealed by real-time PCR. Knockdown of p65 decreased neuronal viability and antiapoptotic gene expression. In addition, we showed that KA-stimulated DNA-binding activity of NF-kappaB was associated with reactive oxygen species and calcium signals, using AMPA/KA receptor antagonist, calcium chelator, and antioxidant. These results suggest that the fast and transient activation of NF-kappaB initiated by calcium signals is one of the important proximal events in response to KA-induced excitotoxicity, which has neuroprotective effect against KA-induced apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1134/s000629791001013xDOI Listing

Publication Analysis

Top Keywords

activation nf-kappab
8
nf-kappab neurons
8
neurons neuroprotective
8
response kainic
8
ka-induced excitotoxicity
8
fast transient
8
dna-binding activity
8
activity nf-kappab
8
calcium signals
8
nf-kappab
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!