A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5qiidthc89fnfam3l710rsrtc202n18a): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Coarse-grained simulations of membranes under tension. | LitMetric

Coarse-grained simulations of membranes under tension.

J Chem Phys

Department of Physics, University of Konstanz, 78457 Konstanz, Germany.

Published: March 2010

We investigate the properties of membranes under tension by Monte Carlo simulations of a generic coarse-grained model for lipid bilayers. We give a comprising overview of the behavior of several membrane characteristics, such as the area per lipid, the monolayer overlap, the nematic order, and pressure profiles. Both the low-temperature regime, where the membranes are in a gel L(beta(')) phase, and the high-temperature regime, where they are in the fluid L(alpha) phase, are considered. In the L(beta(')) state, the membrane is hardly influenced by tension. In the fluid state, high tensions lead to structural changes in the membrane, which result in different compressibility regimes. The ripple state P(beta(')), which is found at tension zero in the transition regime between L(alpha) and L(beta(')), disappears under tension and gives way to an interdigitated phase. We also study the membrane fluctuations in the fluid phase. In the low-tension regime the data can be fitted nicely to a suitably extended elastic theory. At higher tensions the elastic fit consistently underestimates the strength of long-wavelength fluctuations. Finally, we investigate the influence of tension on the effective interaction between simple transmembrane inclusions and show that tension can be used to tune the hydrophobic mismatch interaction between membrane proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3352583DOI Listing

Publication Analysis

Top Keywords

membranes tension
8
tension
7
membrane
5
coarse-grained simulations
4
simulations membranes
4
tension investigate
4
investigate properties
4
properties membranes
4
tension monte
4
monte carlo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!