Coherent site-directed transport in complex molecular networks: an effective Hamiltonian approach.

J Chem Phys

Schulich Faculty of Chemistry and The Lise Meitner Center for Computational Quantum Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.

Published: March 2010

Defining the conditions for coherent site-directed transport from an electron donor to a specific acceptor through tunneling barriers in a network of multiple donor/acceptors sites is an important step toward controlling electronic processes in molecular networks. The required analysis is most challenging since the entire network in essentially involved in coherent transport. In this work we introduce an efficient approach for formulating an effective donor/acceptor coupling in terms of the entire network parameters. The approach is based on implementation of Feshbach projection operators to map the entire network Hamiltonian onto a subspace defined by two specific donor and acceptor sites. This nonperturbative approach enables to define regimes of network parameters in which the effective donor-acceptor coupling is optimal. This is demonstrated numerically for simple models of molecular networks.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3355550DOI Listing

Publication Analysis

Top Keywords

molecular networks
12
entire network
12
coherent site-directed
8
site-directed transport
8
network parameters
8
network
5
transport complex
4
complex molecular
4
networks effective
4
effective hamiltonian
4

Similar Publications

Objective: Colorectal Cancer (CRC) has attracted much attention due to its high mortality and morbidity. Cordycepin, also known as 3'-deoxyadenosine (3'-dA), exhibits many biological functions, including antibacterial, anti-inflammatory, antiviral, anti-tumor, and immunomodulatory effects. It has been proven to show anticancer activity in both laboratory research studies and living organisms.

View Article and Find Full Text PDF

A planktonic population of bacteria can form a biofilm by adhesion and colonization. Proteins known as "adhesins" can bind to certain environmental structures, such as sugars, which will cause the bacteria to attach to the substrate. Quorum sensing is used to establish the population is dense enough to form a biofilm.

View Article and Find Full Text PDF

Delineating CYP2C19-Mediated Interactions: Network Pharmacology Investigation of Ilaprazole and Clopidogrel versus Conventional Proton Pump Inhibitors.

Curr Drug Discov Technol

December 2024

Department of Pharmacy Practice, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamilnadu, 603203, India.

Background: Clopidogrel, an antiplatelet drug commonly used in cardiovascular disease, is metabolized by the liver mainly through CYP2C19. Concomitant use of Proton pump inhibitors along with clopidogrel may affect the potency of clopidogrel by CYP2C19 inhibition. However, a novel PPI, ilaprazole is known to differ in its pharmacokinetic features, given the potential differences between ilaprazole's interactions and their metabolism with clopidogrel.

View Article and Find Full Text PDF

Background: Association between dietary factors and the risk of developing inflammatory bowel disease (IBD) has been studied extensively. However, identification of deleterious dietary patterns merits further study.

Aim: To investigate the risk of developing Crohn's disease (CD) and ulcerative colitis (UC) according to the inflammatory score of the diet (ISD) in the multinational European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.

View Article and Find Full Text PDF

Influence of CTAB Reverse Micellar Confinement on the Tetrahedral Structure of Liquid Water.

J Phys Chem B

January 2025

Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India.

The effect of confinement on the tetrahedral ordering of liquid water plays a vital role in controlling their microscopic structure and dynamics as well as their spectroscopic properties. In this article, we have performed the classical molecular dynamics simulations of four different CTAB/water/chloroform reverse micelles with varied water content to study how the tetrahedral ordering of nanoscale water inside reverse micellar confinement influences the microscopic dynamics and the structural relaxation of water···water hydrogen bonds and its impact on the low-frequency intermolecular vibrational bands. We have noticed from the results obtained from simulated trajectories the lowering trends of tetrahedral ordering of water pools in reverse micellar confinements as we move from bulk to confined and strictly confined environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!