The venom proteome of Bothrops alternatus, a venomous snake widespread in South America, was analyzed by 2-D electrophoresis followed by mass spectrometric analysis and determination of enzymatic activities. The venomic composition revealed that metallo- and serine proteinases play primary roles in the pathogenesis of the envenomation by this pitviper. The identified 100 venom components with molecular masses from 10 to 100 kDa belong to six protein families: metalloproteinases, serine/thrombin-like proteinases, phospholipases A(2), L-amino acid oxidases, disintegrins and thrombin inhibitors. Metalloproteinases predominate and belong exclusively to the P-III class including the most potent hemorrhagic toxins. They represent 50% of all identified proteins. Two isoforms were identified: homologous to jararhagin, a hemorrhagic toxin, and to beritractivase, a nonhemorrhagic and pro-coagulant metalloproteinase. The B. alternatus venom is a rich source of proteins influencing the blood coagulation system with a potential for medical application. The isoelectric points of the components are distributed in the acidic pH range (the pI values are between 4 and 7) and no basic proteins were detected.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr901128xDOI Listing

Publication Analysis

Top Keywords

bothrops alternatus
8
venomics bothrops
4
alternatus pool
4
pool acidic
4
proteins
4
acidic proteins
4
proteins predominant
4
predominant hemorrhagic
4
hemorrhagic coagulopathic
4
coagulopathic activities
4

Similar Publications

Metastatic melanoma is highly aggressive and challenging, often leading to a grim prognosis. Its progression is swift, especially when mutations like BRAFV600E continuously activate pathways vital for cell growth and survival. Although several treatments target this mutation, resistance typically emerges over time.

View Article and Find Full Text PDF

Molecular detection of Hepatozoon species (Apicomplexa: Hepatozoidae) infecting snakes in the Northeastern region of Argentina.

Parasitol Res

May 2024

Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina.

The genus Hepatozoon Miller (1908) contains a wide range of obligate parasitic organisms with complex life cycles involving vertebrates and hematophagous invertebrates. Despite over 300 species being described, only a small percentage has been characterized in snakes using morphological and molecular techniques. The prevalence of these parasites in snakes is significant, highlighting the need for molecular descriptions in such elusive hosts.

View Article and Find Full Text PDF

Comparative electron microscopy study of spermatozoa in snakes (Lepidosauria, Squamata).

Micron

July 2024

Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF 70919-900, Brazil. Electronic address:

The ultrastructure of snake sperm has received substantial attention primarily because snakes exhibit considerable variability in reproductive characteristics between species, with a wide range of mating systems and reproductive behaviors. Variability of sperm morphology among snake species may be associated with the reproductive strategies of each taxon, such as competition or sperm storage. We provide a detailed description of the sperm ultrastructure of nine snake species (Anilius scytale, Tropidophis paucisquamis, Bothrops jararaca, Oxyrhopus guibei, Dipsas mikanii, Micrurus corallinus, Xenopholis scalaris, Acrochordus javanicus, and Cylindrophis ruffus) and compared this with sperm data from the literature for the following taxa: Liotyphlops beui, Amerotyphlops reticulatus, Trilepida koppesi, Anilios waitii, Anilios endoterus, Aspidites melanochephalus, Boa constrictor amarali, Corallus hortulana, Epicrates cenchria, Boa constrictor occidentalis, Eryx jayakari, Micrurus corallinus, Micrurus surinamensis, Micrurus frontalis, Micrurus altirostris, Oxyuranus microlepidotus, Bothrops alternatus, Bothrops diporus, Crotalus durissus, Agkistrodon contortrix, Vipera aspis, Boiga irregularis, Zamenis schrenckii, Zamenis scalaris, Stegonotus cuculatus, Nerodia sipedon, Liodytes pygaea, and Myrrophis chinensis.

View Article and Find Full Text PDF

ToxCodAn-Genome: an automated pipeline for toxin-gene annotation in genome assembly of venomous lineages.

Gigascience

January 2024

Laboratório de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, 05503-900 SP, Brazil.

Background: The rapid development of sequencing technologies resulted in a wide expansion of genomics studies using venomous lineages. This facilitated research focusing on understanding the evolution of adaptive traits and the search for novel compounds that can be applied in agriculture and medicine. However, the toxin annotation of genomes is a laborious and time-consuming task, and no consensus pipeline is currently available.

View Article and Find Full Text PDF

Three snake venoms from Bothrops genus induced apoptosis and cell cycle arrest in K562 human leukemic cell line.

Toxicon

February 2024

Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil. Electronic address:

Cancer is indisputably one of the leading causes of death worldwide. Snake venoms are a potential source of bioactive compounds, complex mixtures constituted mainly of proteins and peptides with several pharmacological possibilities, including the potential to inhibit tumoral cell growth. In the present study, it was evaluated the antitumor effect of crude venom of Bothrops erythromelas (BeV), Bothrops jararaca (from Southern and Southeastern- BjsV and BjsdV, respectively) and Bothrops alternatus (BaV) in in vitro Chronic myeloid leukemia (CML) cancer cell line model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!