[Indicators of articular cartilage degeneration in synovial fluid].

Vnitr Lek

Výzkumný ústav chorob revmatických, Praha.

Published: March 1991

Detection of proteoglycans in biological fluids is a perspective method for the evaluation of the degree of catabolic processes in articular cartilage. The demand of accuracy and specificity of detection of substructures of the degradation products of the cartilaginous matrix, with the perspective of routine large scale examinations, restricts available possible methods practically only to the use of immunochemical methods. In the present investigation in the inhibitory ELISA test polyclonal antibodies with a double specificity in relation to basic structures of the cartilage--proteoglycans--were used. The highest concentrations of degradation products of proteoglycans in punctates of synovial fluid were found in diseases where the clinical picture is dominated by repeated attacks of the joints with longer remission periods, and where the attack is stimulated, usually by stimuli of an intermittent systemic or exogenous character (gout, reactive arthritis incl. Reiter's syndrome, Lyme disease).

Download full-text PDF

Source

Publication Analysis

Top Keywords

articular cartilage
8
degradation products
8
[indicators articular
4
cartilage degeneration
4
degeneration synovial
4
synovial fluid]
4
fluid] detection
4
detection proteoglycans
4
proteoglycans biological
4
biological fluids
4

Similar Publications

Osteoarthritis (OA) is a common degenerative bone and joint disease with an unclear pathogenesis. Our study identified that the histone acetyltransferase encoded by Kat7 is upregulated in the affected articular cartilage of OA patients and in a mice model of medial meniscal instability-induced OA. Chondrocyte-specific knockdown of Kat7 expression exhibited a protective effect on articular cartilage integrity.

View Article and Find Full Text PDF

Fabrication of Hypoxia-Mimicking Supramolecular Hydrogels for Cartilage Repair.

ACS Appl Bio Mater

January 2025

Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India.

Despite advancements in chronic arthritis treatment, there remains a significant demand for advanced nanotechnologies capable of efficiently delivering a wide range of therapeutic agents to provide symptomatic relief and facilitate the healing of inflamed cartilage tissue. Considering the significant impact of hypoxia on the development and maintenance of chondral tissue, replicating its effects on stem cells could be a potential approach for the treatment of osteoarthritis (OA). Cobalt is a prominent hypoxia-inducing agent, owing to its ability to activate the hypoxia-inducible factor (HIF) pathway regardless of cellular oxygen levels.

View Article and Find Full Text PDF

Deep Learning Superresolution for Simultaneous Multislice Parallel Imaging-Accelerated Knee MRI Using Arthroscopy Validation.

Radiology

January 2025

From the Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, 660 1st Ave, 3rd Fl, Rm 313, New York, NY 10016 (S.S.W., J.V., R.K., E.H.P., J.F.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, University Hospital Tübingen, Tübingen, Germany (S.S.W.); Department of Radiology, University Hospital Basel, Basel, Switzerland (J.V.); Department of Radiology, Hospital do Coraçao, São Paulo, Brazil (T.C.R.); Academic Surgical Unit, South West London Elective Orthopaedic Centre (SWLEOC), London, United Kingdom (D.D.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Department of Radiology, Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Medscanlagos Radiology, Cabo Frio, Brazil (A.S.); Centre for Data Analytics, Bond University, Gold Coast, Australia (S.E.S.); Siemens Healthineers AG, Erlangen, Germany (I.B.); and Siemens Medical Solutions USA, Malvern, Pa (G.K.).

Background Deep learning (DL) methods can improve accelerated MRI but require validation against an independent reference standard to ensure robustness and accuracy. Purpose To validate the diagnostic performance of twofold-simultaneous-multislice (SMSx2) twofold-parallel-imaging (PIx2)-accelerated DL superresolution MRI in the knee against conventional SMSx2-PIx2-accelerated MRI using arthroscopy as the reference standard. Materials and Methods Adults with painful knee conditions were prospectively enrolled from December 2021 to October 2022.

View Article and Find Full Text PDF

Background/purpose: In this study, we utilized magnetic resonance imaging data of the temporomandibular joint, collected from the Division of Oral and Maxillofacial Surgery at Taipei Veterans General Hospital. Our research focuses on the classification and severity analysis of temporomandibular joint disease using convolutional neural networks.

Materials And Methods: In gray-scale image series, the most critical features often lie within the articular disc cartilage, situated at the junction of the temporal bone and the condyles.

View Article and Find Full Text PDF

Reverse Hill-Sachs lesions (RHSL) are common complications associated with posterior shoulder dislocations and represent a significant challenge for preserving joint stability and function. If untreated, these compression fractures of the anteromedial humeral head can compromise the integrity of the joint, predisposing patients to recurrent instability and arthropathy. While various treatment modalities exist, achieving an anatomic reduction of the defect while preserving the articular cartilage remains a desirable outcome, particularly in acute settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!