The aim of the study was to understand the effect of benzyl alcohol on biological activity, aggregation behavior, denaturant and heat-induced unfolding of lysozyme. Compatibility studies of lysozyme carried out with a number of anti-microbial preservatives, indicated benzyl alcohol to be the best suppressor of protein aggregation against heat stress. The effect of this preservative was checked at various pH values ranging from 4.0 to 9.0. In spite of reducing the thermal denaturation temperature (T(m)) at all pH values, benzyl alcohol had a stabilizing effect on lysozyme in terms of retaining the biological activity when the enzyme was incubated at 75 degrees C. The reduction in T(m) with increasing benzyl alcohol concentration was correlated with decreasing surface tension of surrounding medium. A detailed thermodynamic study of lysozyme in the presence of benzyl alcohol was carried out at pH 6.2. Change in Gibb's free energy of thermal unfolding at 25 degrees C was found to remain constant in the presence of benzyl alcohol, indicating no interaction of benzyl alcohol with the native protein at room temperature. Both the enthalpy and entropy change at mid point of thermal unfolding were found to increase in the presence of benzyl alcohol indicating the stabilization of partially unfolded state.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.22129DOI Listing

Publication Analysis

Top Keywords

benzyl alcohol
36
presence benzyl
12
benzyl
9
alcohol
9
surface tension
8
biological activity
8
thermal unfolding
8
alcohol indicating
8
stabilization lysozyme
4
lysozyme benzyl
4

Similar Publications

The protonolysis and redox reactivity of a Ce(IV) carbonate complex supported by the Kläui tripodal ligand [(η-CH)Co{P(O)(OEt)}] (L) have been studied. Whereas treatment of [Ce(L)(CO)] () with RCOH afforded [Ce(L)(RCO)] ( = Me (), Ph (), 2-NOCH ()), the reaction of with PhCHCOH resulted in formation of a mixture of Ce(IV) () and Ce(III) () carboxylate species. In benzene in the dark, was slowly converted into via Ce(IV)-O(carboxylate) homolysis.

View Article and Find Full Text PDF

The development of sustainable synthetic methods for converting alcohols to amines is of great interest due to their widespread use in pharmaceuticals and fine chemicals. In this work, we present an electrochemical approach by using green electrons for the selective oxidation of benzyl alcohol to benzaldehyde using a NiOOH catalyst, followed by its reductive amination to form benzyl--butylamine. The number of Ni monolayer equivalents on the catalyst was found to significantly influence selectivity, with 2 monolayers achieving up to 90% faradaic efficiency (FE) for benzaldehyde in NaOH, while 10 monolayers performed best in a -butylamine solution (pH 11), yielding 100% FE for benzaldehyde.

View Article and Find Full Text PDF

Solar-driven CO photoreduction holds promise for sustainable fuel and chemical productions, but the complex proton-coupled multi-electron transfer processes and sluggish oxidation half-reaction kinetics substantially hinder its efficiency. Here, we devised a rational catalyst design to address these challenges by fabricating ferrocene carboxylic acid-functionalized CsSbBr nanocrystals (CSB-Fc NCs), which facilitate simultaneous benzyl alcohol oxidation and CO reduction reactions under visible-light irradiation. The synchronized proton-coupled electron transfer processes between the reduction and oxidation half-reactions on CSB-Fc NCs resulted in a 5-fold increase in the CO reduction rate (45.

View Article and Find Full Text PDF

Stroke is the leading cause of death and disability worldwide, with ischemic stroke accounting for the majority of these. HBA is the active ingredient in and has potential therapeutic effects on central nervous system diseases. In this study, the cell model of cerebral ischemia was replicated by the culture method of oxygen-glucose deprivation/reoxygenation, and the rat model of vascular dementia was established by the two-vessel occlusion method.

View Article and Find Full Text PDF

The second 3d-transition metal incorporation in Ni-(oxy)hydroxide has a drastic effect on alkaline OER and alcohol dehydrogenation reactivity. While Mn incorporation suppresses the alkaline OER, it greatly improves the alcohol dehydrogenation reactivity. A complete reversal of reactivity is obtained when Fe is incorporated, which shows better performance for alkaline OER with poor alcohol dehydrogenation reactivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!