Can thermal expansion differences between cryopreserved tissue and cryoprotective agents alone cause cracking?

Cryo Letters

Biothermal Technology Laboratory, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

Published: April 2010

One of the limiting factors in large-scale cryopreservation is the formation of fractures. The prevalence of cracking in cryopreserved bulky tissues is frequently associated with temperature gradients, which lead to non-uniform thermal contraction of the tissue. With new cryoprotectants available, it may be possible to reduce temperature gradients to much lower levels, in which case other contributions to mechanical stress development and cracking will become more significant. One potential contributor to such stress is the difference in thermal expansion between tissue and the cryoprotectant. The current study addresses the role of thermal expansion mismatch by drawing upon recently obtained experimental data and engineering models for the development of thermal stresses. This question is addressed for the case of cryopreservation via vitrification (glass formation), for which crystal formation is avoided, and tissues and solutions gradually transition from fluid-like to solid-like response, as the viscosity increases with decreasing temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377493PMC

Publication Analysis

Top Keywords

thermal expansion
12
temperature gradients
8
thermal
5
expansion differences
4
differences cryopreserved
4
cryopreserved tissue
4
tissue cryoprotective
4
cryoprotective agents
4
agents cracking?
4
cracking? limiting
4

Similar Publications

The World Health Organization (WHO) has added glass ionomer cement (GIC) to the WHO Model List of Essential Medicines since 2021, which represents the most efficacious, safe and cost-effective medicines for priority conditions. With the potential increase in the use of GIC, this review aims to provide an overview of the clinical application of GIC with updated evidence in restorative and preventive dentistry. GIC is a versatile dental material that has a wide range of clinical applications, particularly in restorative and preventive dentistry.

View Article and Find Full Text PDF

Preparation of anti-shrinkage branched poly (butylene succinate-co-butylene terephthalate)/cellulose nanocrystal foam with excellent degradability and thermal insulation.

Int J Biol Macromol

January 2025

State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:

Branched poly (butylene succinate-co-butylene terephthalate) (BPBST) was synthesized by in-situ polycondensation to enhance the foamability of poly (butylene succinate-co-butylene terephthalate) (PBST) and was blended with cellulose nanocrystals (CNC) to address foam shrinkage. The introduction of 2 wt% CNC increased the crystallization temperature of BPBST from 66.6 °C to 87.

View Article and Find Full Text PDF

Bridge expansion joints are critical components that accommodate the movement of a bridge caused by temperature fluctuations, concrete shrinkage, and vehicular loads. Analyzing the spatiotemporal deformation of these expansion joints is essential for monitoring bridge safety. This study investigates the deformation characteristics of Hongtang Bridge in Fuzhou, China, using synthetic aperture radar interferometry (InSAR).

View Article and Find Full Text PDF

Bead-foaming technology effectively addresses production cycles, polymerization control, and cellular structure defects in conventional bulk foaming, especially in high-performance PMI foams. In this work, highly expandable PMI beads were synthesized based on the aqueous suspension polymerization of methacrylic acid-methacrylonitrile-tert-butyl methacrylate (MAA-MAN-tBMA) copolymers. The suspension polymerization was stabilized by reducing the solubility of MAA by the salting-out effect and replacing formamide (a common PMI foaming agent) with tBMA.

View Article and Find Full Text PDF

Structural Changes in Semi-Crystalline Ethylene-Based Ionomers During the Heating Process.

Polymers (Basel)

December 2024

Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan.

Article Synopsis
  • The study explored how different ionic groups in ethylene-based ionomers affect their behavior when heated, focusing on carboxylic acid groups neutralized by Zn and Na ions.
  • Differential scanning calorimetry (DSC) showed two endothermic peaks during heating, with the best melting enthalpy occurring at specific Na/Zn ratios, indicating optimal crystallite growth with both ions.
  • X-ray scattering techniques revealed temperature-dependent phase transitions of the crystals, and expansions of ionic aggregates were linked to the melting of polyethylene crystals, highlighting the relationship between ionic composition, microstructure, and thermal properties.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!