Using easy ambient sonic-spray ionization mass spectrometry (EASI-MS), fast and non-destructive fingerprinting identification and aging of ballpoint pen ink writings have been performed directly from paper surfaces under ordinary ambient conditions. EASI-MS data obtained directly from the ink lines showed that pens from different brands provide typical ink chemical profiles. Accelerated ink aging has also been monitored by EASI-MS revealing contrasting degradation behaviors for six different common ink dyes. As demonstrated for Basic Violet 3, some dyes display a cascade of degradation products whose abundances increase linearly with time thus functioning as 'chemical clocks' for ink aging. Analysis of questionable documents has confirmed the ink aging capabilities of EASI-MS. The order of superimposition at a crossing point has also been determined by EASI-MS. For two superimposed ink lines, continuous EASI-MS analysis has also shown that the EASI spray is able to penetrate through the layers and therefore both ink layers could be characterized.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b923398aDOI Listing

Publication Analysis

Top Keywords

ink aging
12
ink
10
easy ambient
8
ambient sonic-spray
8
sonic-spray ionization
8
ionization mass
8
mass spectrometry
8
ink lines
8
easi-ms
6
fingerprinting aging
4

Similar Publications

Y-27632 and dual media culture approach promote the construction and transplantation of rabbit limbal epithelial cell sheets via cell spheroid culture and auto-bioprinting.

Acta Biomater

January 2025

Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China; Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China; Aier School of Ophthalmology, Central South University, Changsha, China. Electronic address:

The shortage of corneal donors and the limitations in tissue engineering grafts, such as biocompatibility and mechanical properties, pose significant challenges in corneal transplantation. Here, for the first time, we investigate the effect of Rho kinase inhibitor Y-27632 and a dual media culture approach, including proliferative media (M1) and stabilizing media (M2), on rabbit limbal epithelial stem cells (LESCs), aiming to explore the feasibility of constructing corneal cell sheets in vitro through auto-bioprinting and assessing their corneal wound healing capacity in vivo. Y-27632 has primarily demonstrated significantly enhanced LESCs growth, proliferation, and reduced apoptosis.

View Article and Find Full Text PDF

Direct Ink Writing Additive Manufacturing of Silica Aerogels.

ChemSusChem

December 2024

UESTC: University of Electronic Science and Technology of China, Institute of Fundamental and Frontier Sciences, Jianshe Road, Chengdu, CHINA.

Article Synopsis
  • * The traditional "sol-gel" method of producing SAs limits their applications in areas like catalysis and insulation.
  • * Direct ink writing (DIW) technology is emerging as a more effective way to create complex 3D structures from SAs, allowing for better precision and functionality while addressing the challenges of current production methods.
View Article and Find Full Text PDF

Iridium oxide (IrO) is recognized as a state-of-art catalyst for anodes of low-temperature polymer-electrolyte membrane water electrolyzers (PEMWE), one of the promising clean energy technologies to produce hydrogen, a critical energy carrier for decarbonization. However, typical IrO ink formulations are challenging to process in liquid-film coating processes because of their poor stability against gravitational settling and low viscosities. Here we report on time evolution of the microstructure of concentrated IrO inks in a water-rich dispersion medium, probed using a combination of rheology and X-ray scattering for up to four days.

View Article and Find Full Text PDF

Fraudulent activities often involve document manipulation, which poses a significant challenge to forensic science. To address this issue, a novel method was developed that combines intended artificial UV pre-degradation, digital color analysis (DCA) of stroke images, and various machine learning (ML) models. This method can cluster blue ballpoint pen inks and predict their photodegradation time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!