Aberrant temporal and spatial brain activity during rest in patients with chronic pain.

Proc Natl Acad Sci U S A

Brain Research Unit and Advanced Magnetic Imaging Centre, Low Temperature Laboratory, Aalto University School of Science and Technology, FI-00076 Espoo, Finland.

Published: April 2010

In the absence of external stimuli, human hemodynamic brain activity displays slow intrinsic variations. To find out whether such fluctuations would be altered by persistent pain, we asked 10 patients with unrelenting chronic pain of different etiologies and 10 sex- and age-matched control subjects to rest with eyes open during 3-T functional MRI. Independent component analysis was used to identify functionally coupled brain networks. Time courses of an independent component comprising the insular cortices of both hemispheres showed stronger spectral power at 0.12 to 0.25 Hz in patients than in control subjects, with the largest difference at 0.16 Hz. A similar but weaker effect was seen in the anterior cingulate cortex, whereas activity of the precuneus and early visual cortex, used as a control site, did not differ between the groups. In the patient group, seed point-based correlation analysis revealed altered spatial connectivity between insulae and anterior cingulate cortex. The results imply both temporally and spatially aberrant activity of the affective pain-processing areas in patients suffering from chronic pain. The accentuated 0.12- to 0.25-Hz fluctuations in the patient group might be related to altered activity of the autonomic nervous system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852014PMC
http://dx.doi.org/10.1073/pnas.1001504107DOI Listing

Publication Analysis

Top Keywords

chronic pain
12
brain activity
8
control subjects
8
independent component
8
anterior cingulate
8
cingulate cortex
8
patient group
8
activity
5
aberrant temporal
4
temporal spatial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!