Purpose: To describe the appearance of lower extremity runoff vessels following subintimal recanalization (SIR) on contrast-enhanced magnetic resonance angiography (ceMRA) and compare 2 different ceMRA techniques.
Methods: A total of 6 patients underwent stepping table 3-dimensional (3D) ceMRA and time-resolved 2-dimensional (2D) MRA within 1 to 3 days (mean 1.83 days) following SIR. The 2 techniques were compared with intra-arterial digital subtraction angiography (DSA).
Results: A total of 15 arteries were recanalized in 6 patients. Three-dimensional ceMRA allowed evaluation of patency in all segments above the knee. Postprocedural hyperemia impaired the assessment of the trifurcation vessels on 3D ceMRA. Due to its higher temporal resolution 2D MRA was not affected by venous contamination and allowed reliable confirmation of patency of the recanalized vessels.
Conclusions: Diagnostic MRA studies of the lower extremity runoff vessels following SIR is possible, but a hybrid technique using a stepping table MR DSA and a time-resolved sequence like 2D MRA of the calf station is necessary for runoff assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1538574410362110 | DOI Listing |
Sci Data
January 2025
Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK.
Pituitary neuroendocrine tumors remain one of the most common intracranial tumors. While radiomic research related to pituitary tumors is progressing, public data sets for external validation remain scarce. We introduce an open dataset comprising high-resolution T1 contrast-enhanced MR scans of 136 patients with pituitary tumors, annotated for tumor segmentation and accompanied by clinical, radiological and pathological metadata.
View Article and Find Full Text PDFEur Radiol
January 2025
Division for Minimally-invasive Lymph Vessel Therapy, Department of Diagnostic and Interventional Radiology, University Hospital of Bonn, Bonn, Germany.
Purpose: To assess the success rate of confirmation of ultrasound-guided intranodal needle positioning by saline injection for dynamic contrast-enhanced magnetic resonance lymphangiography (DCMRL) in pediatric patients.
Material And Methods: Data from children undergoing nodal DCMRL after ultrasound-guided needle positioning into inguinal lymph nodes and validation of the needle position by injection of plain saline solution between 05/2020 and 12/2022 were reviewed. On injection of saline solution, adequate needle position was confirmed by lymph node distension without leakage.
JCO Clin Cancer Inform
January 2025
SimBioSys Inc, Chicago, IL.
Purpose: Perfusion modeling presents significant opportunities for imaging biomarker development in breast cancer but has historically been held back by the need for data beyond the clinical standard of care (SoC) and uncertainty in the interpretability of results. We aimed to design a perfusion model applicable to breast cancer SoC dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) series with results stable to low temporal resolution imaging, comparable with published results using full-resolution DCE-MRI, and correlative with orthogonal imaging modalities indicative of biophysical markers.
Methods: Subsampled high-temporal-resolution DCE-MRI series were run through our perfusion model and resulting fits were compared for consistency.
Radiology
January 2025
From the Department of Radiology, Shenzhen Nanshan People's Hospital, Shenzhen University, Taoyuan Rd No. 89, Nanshan District, Shenzhen 518000, Guangdong, China (H.H., Z.D., Y.Q.); Medical AI Laboratory and Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China (J.M., R.L., B.H.); Department of Medical Imaging, People's Hospital of Longhua, Shenzhen, Guangdong, China (X.P., Y.Z.); and Department of Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong, China (D.Z., G.H.).
Background Multiparametric MRI, including contrast-enhanced sequences, is recommended for evaluating suspected prostate cancer, but concerns have been raised regarding potential contrast agent accumulation and toxicity. Purpose To evaluate the feasibility of generating simulated contrast-enhanced MRI from noncontrast MRI sequences using deep learning and to explore their potential value for assessing clinically significant prostate cancer using Prostate Imaging Reporting and Data System (PI-RADS) version 2.1.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
Introduction: Transcranial pulse stimulation (TPS) is increasingly being investigated as a promising potential treatment for Alzheimer's disease (AD). Although the safety and preliminary clinical efficacy of TPS short pulses have been supported by neuropsychological scores in treated AD patients, its fundamental mechanisms are uncharted.
Methods: Herein, we used a multi-modal preclinical imaging platform combining real-time volumetric optoacoustic tomography, contrast-enhanced magnetic resonance imaging, and ex vivo immunofluorescence to comprehensively analyze structural and hemodynamic effects induced by TPS.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!