The stable cloning of giant DNA is a necessary process in the production of recombinant/synthetic genomes. Handling DNA molecules in test tubes becomes increasingly difficult as their size increases, particularly above 100 kb. The need to prepare such large DNA molecules in a regular manner has limited giant DNA cloning to certain laboratories. Recently, we found stable plasmid DNA of up to 100 kb in Escherichia coli culture medium during the infection and propagation of lambda phage. The extracellular plasmid DNA (excpDNA) released from lysed E. coli was demonstrably stable enough to be taken up by competent Bacillus subtilis also present in the medium. ExcpDNA transfer, induced by simply mixing E. coli lysate with recipient B. subtilis, required no biochemical purification of the DNA. Here, this simple protocol was used to integrate excpDNA into a B. subtilis genome, designated the 'BGM vector'. A slightly modified protocol for DNA cloning in BGM is presented for DNA fragments >100 kb. This technique should facilitate giant DNA cloning in the BGM vector and allow its application to other hosts that can undergo natural transformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860128PMC
http://dx.doi.org/10.1093/nar/gkq142DOI Listing

Publication Analysis

Top Keywords

giant dna
12
dna cloning
12
dna
11
escherichia coli
8
bacillus subtilis
8
subtilis genome
8
dna molecules
8
plasmid dna
8
cloning bgm
8
integration stable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!