Purpose: To establish a fluorescence-based assay for drug interactions with the ABC-export-protein MRP2 (ABCC2).

Methods: Apical membrane vesicles were isolated by differential centrifugation from polarized MDCKII cells and MDCKII cells transfected with human MRP2. Vesicle fractions were characterized by electron microscopy, determination of the marker enzyme alkaline phosphatase and Western blot analysis of MRP2. Vesicle orientation was determined by measurement of 5'-nucleotidase activity in the absence and in the presence of detergents. To assess MRP2 activity, the uptake of the fluorescent MRP2-substrate 5-(6)-carboxy-2',7'-dichlorofluorescein (CDF) was determined in the absence and in the presence of other compounds potentially interacting with MRP2.

Results: Apical membrane vesicles could be isolated from cells in considerable purity as indicated by electron microscopy, enrichment of alkaline phosphatase and high enrichment of MRP2 in vesicles of MDCKII-MRP2 cells. About half of the vesicles showed "inside-out" orientation. CDF was taken up into the membrane vesicles in a time- and concentration-dependent manner following a Michaelis-Menten type of kinetics with a K(M) of 39 microM and a V(max) of 465.3 fmol/(mgprotein x min). Thereby, uptake into vesicles from transfected cells was significantly higher than uptake into vesicles from control cells. Presence of known MRP2-substrates/inhibitors in the incubation medium decreased CDF uptake into the vesicles in a concentration-dependent manner, whereas nonsubstrates/inhibitors had no effect.

Conclusions: This CDF-based uptake assay can be used as a rapid and sensitive screening system to assess drug interactions with human MRP2 and therefore represents a useful tool in compound profiling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2010.03.008DOI Listing

Publication Analysis

Top Keywords

membrane vesicles
16
drug interactions
12
uptake vesicles
12
vesicles
9
fluorescence-based assay
8
assay drug
8
interactions human
8
apical membrane
8
vesicles isolated
8
mdckii cells
8

Similar Publications

Milk is a multifaceted biofluid that is essential for infant nutrition and development, yet its cellular and bioactive components, particularly maternal milk cells, remain understudied. Early research on milk cells indicated that they cross the infant's intestinal barrier and accumulate within systemic organs. However, due to the absence of modern analytical techniques, these studies were limited in scope and mechanistic analysis.

View Article and Find Full Text PDF

Formation of Highly Negatively Charged Supported Lipid Bilayers on a Silica Surface: Effects of Ionic Strength and Osmotic Stress.

Langmuir

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.

Solid supported lipid bilayers (SLBs) serve as an excellent platform for biophysical studies. However, the formation of highly negatively charged SLBs on negatively charged surfaces remains a challenge due to electrostatic repulsion. Here, we study the effects of ionic strength and osmotic stress on the formation of highly negatively charged SLBs on the silica surface.

View Article and Find Full Text PDF

Diabetic foot ulcer (DFU) is a common and severe complication of diabetes mellitus, the etiology of which remains insufficiently understood, particularly regarding the involvement of extracellular vesicles (EVs). In this study, nanoflow cytometry to detect EVs in DFU skin tissues is used and found a significant increase in the Translocase of Outer Mitochondrial Membrane 20 (TOM20) mitochondrial-derived vesicles (MDVs). The role of MDVs in DFU is yet to be reported.

View Article and Find Full Text PDF

Purpose: Outer membrane vesicles (OMVs) derived from Gram-negative bacteria naturally serve as a heterologous nano-engineering platform, functioning as effective multi-use nanovesicles for diagnostics, vaccines, and treatments against pathogens. To apply refined OMVs for human theranostic applications, we developed naturally exposed receptor-binding domain (RBD) OMVs grafted with antigen 43 as a minimal modular system targeting angiotensin-converting enzyme 2 (ACE2).

Methods: We constructed -derived OMVs using the antigen 43 autotransporter system to display RBD referred to as viral mimetic Ag43β700_RBD OMVs.

View Article and Find Full Text PDF

Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling Lipotoxicity.

Antioxid Redox Signal

January 2025

Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.

Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!