Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: For microvascular outcomes, there is compelling historical and contemporary evidence for intensive blood glucose reduction in patients with either type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM). There is also strong evidence to support macrovascular benefit with intensive blood glucose reduction in T1DM. Similar evidence remains elusive for T2DM. Because cardiovascular outcome trials utilizing conventional algorithms to attain intensive blood glucose reduction have not demonstrated superiority to less aggressive blood glucose reduction (Action to Control Cardiovascular Risk in Diabetes; Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation; and Veterans Affairs Diabetes Trial), it should be considered that the means by which the blood glucose is reduced may be as important as the actual blood glucose.
Methods: By identifying quantitative differences between antidiabetic agents on carbohydrate exposure (CE), hepatic glucose uptake (HGU), hepatic gluconeogenesis (GNG), insulin resistance (IR), peripheral glucose uptake (PGU), and peripheral insulin exposure (PIE), we created a pharmacokinetic/pharmacodynamic model to characterize the effect of the agents on the glucose supply and insulin demand dynamic. Glucose supply was defined as the cumulative percentage decrease in CE, increase in HGU, decrease in GNG, and decrease in IR, while insulin demand was defined as the cumulative percentage increase in PIE and PGU. With the glucose supply and insulin demand effects of each antidiabetic agent summated, the glucose supply (numerator) was divided by the insulin demand (denominator) to create a value representative of the glucose supply and insulin demand dynamic (SD ratio).
Results: Alpha-glucosidase inhibitors (1.25), metformin (2.20), and thiazolidinediones (TZDs; 1.25-1.32) demonstrate a greater effect on glucose supply (SD ratio >1), while secretagogues (0.69-0.81), basal insulins (0.77-0.79), and bolus insulins (0.62-0.67) demonstrate a greater effect on insulin demand (SD ratio <1).
Conclusion: Alpha-glucosidase inhibitors, metformin, and TZDs demonstrate a greater effect on glucose supply, while secretagogues, basal insulin, and bolus insulin demonstrate a greater effect on insulin demand. Because T2DM cardiovascular outcome trials have not demonstrated macrovascular benefit with more aggressive blood glucose reduction when using conventional algorithms that predominantly focus on insulin demand, it would appear logical to consider a model that incorporates both the extent of blood glucose lowering (hemoglobin A1c) and the means by which the blood glucose was reduced (SD ratio) when considering macrovascular outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864174 | PMC |
http://dx.doi.org/10.1177/193229681000400219 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!