The term Vitamin E is utilized to describe eight molecules, subdivided into two groups, tocopherols and tocotrienols (TTs). It has been shown that specific TTs affect the growth of several lines of tumour cells, and that this activity is not shared by tocopherols. In agreement with these observations, a TTs-rich fraction from palm oil (PTRF) was reported to inhibit proliferation and induce apoptosis in several cancer cells. However, the molecular mechanism involved in TTs activity is still unclear. We have recently proposed that TTs pro-apoptotic activity involves estrogen receptor beta (ERbeta) signalling. In this study, we report that, in MCF-7 breast cancer cell, expressing both ERalpha and ERbeta, PTRF treatment increases ERbeta nuclear translocation, as demonstrated by immunofluorescence experiments and significantly inhibits ERalpha expression (-458.91-fold of change) and complete disappearing of the protein from the nucleus. Moreover, PTRF treatment induces ER-dependent genes expression (macrophage inhibitory cytokine-1, early growth response-1 and Cathepsin D) which is inhibited by the ER inhibitor, ICI 182.780, and induces DNA fragmentation. Finally, cDNA-array experiments suggest that the activation of specific pathways in cells treated with gamma-TT with respect to alpha-TT. Our data suggest a novel potential molecular mechanism for TTs activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.200900383DOI Listing

Publication Analysis

Top Keywords

mcf-7 breast
8
breast cancer
8
cancer cells
8
molecular mechanism
8
tts activity
8
ptrf treatment
8
tts
5
tocotrienols activity
4
activity mcf-7
4
cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!