AI Article Synopsis

  • Astaxanthine, a carotenoid metabolite from the prodrug Xancor, shows antioxidant and anti-inflammatory properties, and is being developed for various diseases related to the liver, brain, and blood vessels.
  • The study aimed to determine astaxanthine’s effects on human hemostasis biomarkers, hypothesizing that it could reduce hemostasis activation, potentially benefiting patients with vascular diseases.
  • Results indicated that astaxanthine did not significantly impact platelet function, coagulation indices, or fibrinolytic activity at various tested concentrations, suggesting limited effects on blood clotting mechanisms.

Article Abstract

Astaxanthine is a polar carotenoid metabolite derived from a proprietary prodrug, Xancor, which aligns parallel with the membrane phospholipids exhibiting potent antioxidant, anti-inflammatory, and cell protective properties, although the precise mechanism of action is unknown. This prodrug is currently under development for hepatic, neurologic, and vascular disease indications. Considering established links between heart disease and stroke with platelets, coagulation cascade, and fibrinolysis, the aim of the study was to assess the effect of asthaxantine on human biomarkers of hemostasis. The rationale was to test a hypothesis that the drug may diminish activation of hemostasis, making it a potentially attractive addition to treat patients with vascular disease. In vitro effects of whole blood preincubation with escalating concentrations of asthaxantine (0.3 microM, 1 microM, 3 microM, 10 microM, 30 microM, and 100 microM) were assessed from 12 aspirin-naïve and eight aspirin-treated volunteers with multiple risk factors for vascular disease. A total of 25 biomarkers were measured, of which 12 were related to platelet function, 10 to coagulation, and three to fibrinolysis. Platelet aggregation induced by ADP, collagen, and arachidonic acid and expression of CD31, CD41, GP IIb/IIIa, CD51/61, P-selectin, CD63, CD107a, CD151+CD14, and CD154 were not affected. Coagulation indices such as aPTT, prothrombin time, thrombin time, fibrinogen, antithrombin III (antigen and activity), Protein C, Protein S (free and activity), and von Willebrand factor remained unchanged after incubation with astaxanthine. Fibrinolytic activity biomarkers such as plasminogen, D-dimer, and FDP were also not affected after in vitro pretreatment of blood samples with astaxanthine. In the projected subclinical (less than 1 microM), therapeutic (3 microM to 30 microM), and supratherapeutic concentration (100 microM), astaxanthine in vitro does not affect platelet, coagulation, or fibrinolytic indices in either aspirin-naïve or aspirin-treated subjects. These results are important for the assessment of the safety profile, but remain to be confirmed preclinically, in vivo, and ultimately in the clinic.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MJT.0b013e31819cdbbdDOI Listing

Publication Analysis

Top Keywords

microm microm
20
vascular disease
16
aspirin-naïve aspirin-treated
12
microm
10
vitro effects
8
aspirin-treated subjects
8
multiple risk
8
risk factors
8
factors vascular
8
100 microm
8

Similar Publications

Sonochemical synthesis, optical properties and DFT studies on novel (N-arylamino)phenothiazinium dyes suitable for fluorescence cells imaging.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos str., 400028 Cluj-Napoca, Romania. Electronic address:

Novel (N-arylamino)phenothiazinium dyes containing meta-substituted-arylamine auxochrome units were successfully obtained by applying a sonochemical protocol designed for a more efficient energy usage in the preparation of methylene blue (MB) analogues. Single crystal X-ray diffraction analysis revealed the spatial arrangement in aggregated crystalline state of (N-(meta-bromoaryl)amino)phenothiazinium dye with minor variances induced by the nature of the halogenide counterion (iodide or chloride). The optical UV-vis properties of the novel (N-arylamino)phenothiazinium dyes were comparable to those of the parent MB, with the longest wavelength absorption maxima situated in the visible range (640-680 nm), large molar extinction coefficients (log ε = 4.

View Article and Find Full Text PDF
Article Synopsis
  • Curcumin, found in turmeric, is recognized for its potential health benefits, including anti-cancer and anti-inflammatory properties, but its absorption in the body may be too low to be effective.
  • Dietary sources alone may not provide sufficient curcumin levels, leading researchers to explore methods to enhance its bioavailability, such as using nanoparticles.
  • Increasing curcumin levels might boost its health benefits, particularly its antioxidant effects, but it also requires careful monitoring to avoid negative impacts on cellular functions.
View Article and Find Full Text PDF

Angiotensin I and II Stimulate Cell Invasion of SARS-CoV-2: Potential Mechanism via Inhibition of ACE2 Arm of RAS.

Physiol Res

March 2024

Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic. and Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic.

Angiotensin-converting enzyme 2 (ACE2), one of the key enzymes of the renin-angiotensin system (RAS), plays an important role in SARS-CoV-2 infection by functioning as a virus receptor. Angiotensin peptides Ang I and Ang II, the substrates of ACE2, can modulate the binding of SARS-CoV-2 Spike protein to the ACE2 receptor. In the present work, we found that co incubation of HEK-ACE2 and Vero E6 cells with the SARS-CoV-2 Spike pseudovirus (PVP) resulted in stimulation of the virus entry at low and high micromolar concentrations of Ang I and Ang II, respectively.

View Article and Find Full Text PDF

Differential superoxide production in phosphorylated neuronal nitric oxide synthase mu and alpha variants.

J Inorg Biochem

February 2024

College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA. Electronic address:

Neuronal nitric oxide synthase (nNOS) is regulated by phosphorylation in vivo, yet the underlying biochemical mechanisms remain unclear, primarily due to difficulty in obtaining milligram quantities of phosphorylated nNOS protein; detailed spectroscopic and rapid kinetics investigations require purified protein samples at a concentration in the range of hundreds microM. Moreover, the functional diversity of the nNOS isoform is linked to its splice variants. Also of note is that determination of protein phosphorylation stoichiometry remains as a challenge.

View Article and Find Full Text PDF

Cytotoxic effect of 13α-estrane derivatives on breast, endometrial and ovarian cancer cell lines.

J Steroid Biochem Mol Biol

September 2023

Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia. Electronic address:

Hormone-dependent cancers such as breast, uterine, and ovarian cancers account for more than 35% of all cancers in women. Worldwide, these cancers occur in more than 2.7 million women/year and account for 22% of cancer-related deaths/year.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!