The actinomycin biosynthetic gene cluster of Streptomyces chrysomallus: a genetic hall of mirrors for synthesis of a molecule with mirror symmetry.

J Bacteriol

Institut für Chemie, Arbeitsgruppe Biochemie und Molekulare Biologie, Technische Universität Berlin, Franklinstrasse 29, D-10587 Berlin-Charlottenburg, Germany.

Published: May 2010

A gene cluster was identified which contains genes involved in the biosynthesis of actinomycin encompassing 50 kb of contiguous DNA on the chromosome of Streptomyces chrysomallus. It contains 28 genes with biosynthetic functions and is bordered on both sides by IS elements. Unprecedentedly, the cluster consists of two large inverted repeats of 11 and 13 genes, respectively, with four nonribosomal peptide synthetase genes in the middle. Nine genes in each repeat have counterparts in the other, in the same arrangement but in the opposite orientation, suggesting an inverse duplication of one of the arms during the evolution of the gene cluster. All of the genes appear to be organized into operons, each corresponding to a functional section of actinomycin biosynthesis, such as peptide assembly, regulation, resistance, and biosynthesis of the precursor of the actinomycin chromophore 4-methyl-3-hydroxyanthranilic acid (4-MHA). For 4-MHA synthesis, functional analysis revealed genes that encode pathway-specific isoforms of tryptophan dioxygenase, kynurenine formamidase, and hydroxykynureninase, which are distinct from the corresponding enzyme activities of cellular tryptophan catabolism in their regulation and in part in their substrate specificity. Phylogenetic analysis indicates that the pathway-specific tryptophan metabolism in Streptomyces most probably evolved divergently from the normal pathway of tryptophan catabolism to provide an extra or independent supply of building blocks for the synthesis of tryptophan-derived secondary metabolites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2863554PMC
http://dx.doi.org/10.1128/JB.01526-09DOI Listing

Publication Analysis

Top Keywords

gene cluster
12
streptomyces chrysomallus
8
tryptophan catabolism
8
genes
7
actinomycin
4
actinomycin biosynthetic
4
biosynthetic gene
4
cluster
4
cluster streptomyces
4
chrysomallus genetic
4

Similar Publications

[Distribution of MN blood type among China's minority ethnic groups].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Business Department, Hanzhong Central Blood Station, Hanzhong 723000, China. *Corresponding authors, E-mail:

Objective This study aims to investigate and analyze the distribution of MN blood type among ethnic minorities in China. Methods Through a systematic retrieval of the 981 literature related to MN blood group distribution, 120 literature, meeting the criteria of this study, with complete data were selected. The literature covers 49 ethnic minorities.

View Article and Find Full Text PDF

Background: The industrial production of L-threonine faces challenges because of high production costs, especially those of substrates, meaning new production methods are needed.

Methods: Fur, a new global transcription factor related to L-threonine biosynthesis, was discovered in this study. Multidimensional regulation combined with global transcriptional machinery engineering was used to modify an Escherichia coli strain.

View Article and Find Full Text PDF

The current study was deployed to evaluate the role of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miR-155, along with the inflammatory markers, TNFα and IL-6, and the adhesion molecule, cluster of differentiation 106 (CD106), in Behçet's disease (BD) pathogenesis. The study also assessed MALAT1/miR-155 as promising diagnostic and prognostic biomarkers for BD. The current retrospective case-control study included 74 Egyptian BD patients and 50 age and sex-matched controls.

View Article and Find Full Text PDF

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

This study analyzed targeted sequencing data from 6530 tissue samples from patients with metastatic Chinese colorectal cancer (CRC) to identify low mutation frequency and subgroup-specific driver genes, using three algorithms for overall CRC as well as across different clinicopathological subgroups. We analyzed 425 cancer-related genes, identifying 101 potential driver genes, including 36 novel to CRC. Notably, some genes demonstrated subgroup specificity; for instance, ERBB4 was found as a male-specific driver gene and mutations of ERBB4 only influenced the prognosis of male patients with CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!