Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Papain is a plant cysteine protease of industrial importance having a two-domain structure with its catalytic cleft located at the domain interface. A structure-based rational design approach has been used to improve the thermostability of papain, without perturbing its enzymatic activity, by introducing three mutations at its interdomain region. A thermostable homologue in papain family, Ervatamin C, has been used as a template for this purpose. A single (K174R), a double (K174RV32S) and a triple (K174RV32SG36S) mutant of papain have been generated, of which the triple mutant shows maximum thermostability with the half-life (t(1/2)) extended by 94 min at 60 degrees C and 45 min at 65 degrees C compared to the wild type (WT). The temperature of maximum enzymatic activity (T(max)) and 50% maximal activity (T(50)) for the triple mutant increased by 15 and 4 degrees C, respectively. Moreover, the triple mutant exhibits a faster inactivation rate beyond T(max) which may be a desirable feature for an industrial enzyme. The values of t(1/2) and T(max) for the double mutant lie between those of the WT and the triple mutant. The single mutant however turns out to be unstable for biochemical characterization. These results have been substantiated by molecular modeling studies which also indicate highest stability for the triple mutant based on higher number of interdomain H-bonds/salt-bridges, less interdomain flexibility and lower stability free-energy compared to the WT. In silico studies also explain the unstable behavior of the single mutant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/protein/gzq016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!